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Foreword

We are pleased to present this “Best of…” reprint collection, which provides a chance 

to reflect on what has caught the attention of Biophyscial Journal readers in 2012. This l
collection includes a selection of twelve of the most accessed articles across a range of 

topics. Article selection is primarily based on the number of requests for PDF and full-text 

HTML versions of a given article. We acknowledge that no single measurement can truly 

be indicative of “the best” research papers over a given period of time. This is especially 

true when sufficient time has not necessarily passed to allow one to fully appreciate the 

relative importance of a discovery. That said, we think it is still informative to look back at 

the scientific community’s interests in what has been published over the past year.

In this collection, you will see a range of the exciting topics, including cell biophysics, 

motors and cytoskeleton, single-molecule microscopy, membrane biophysics, systems 

biophysics, biomolecular structure, biophysical methods, and channel electrophysiology, 

that have widely captured the attention and enthusiasm of our readers. They also represent 

several of the different types of papers that BJ publishes: one Biophysical Review, three J
Biophysical Letters, and eight regular articles.

We hope that you will enjoy reading this special collection and that you will visit http://www.

cell.com/biophysj/home to check out the latest findings that we have had the privilege 

to publish. To stay on top of what your colleagues have been reading over the past 30 

days, check out http://www.cell.com/biophysj/mostread. To find other high-quality papers 

published in the full collection of Cell Press journals, be sure to visit http://www.cell.com

Finally, we are grateful for the generosity of our sponsors, who helped make this reprint 

collection possible.

For information for the Best of Series, please contact:

Jonathan Christison
Program Director, Best of Cell Press
jchristison@cell.com
617-397-2893
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Seeing the Forest through the Trees: towards a Unified View on
Physiological Calcium Regulation of Voltage-Gated Sodium Channels

Filip Van Petegem,†* Paolo A. Lobo,† and Christopher A. Ahern‡*
†The Department of Biochemistry andMolecular Biology, Vancouver, British Columbia, Canada; and ‡Department of Molecular Physiology and
Biophysics, University of Iowa, Iowa City, Iowa

ABSTRACT Voltage-gated sodium channels (NaVs) underlie the upstroke of the action potential in the excitable tissues of
nerve and muscle. After opening, NaVs rapidly undergo inactivation, a crucial process through which sodium conductance is
negatively regulated. Disruption of inactivation by inherited mutations is an established cause of lethal cardiac arrhythmia,
epilepsy, or painful syndromes. Intracellular calcium ions (Ca2þ) modulate sodium channel inactivation, and multiple players
have been suggested in this process, including the cytoplasmic NaV C-terminal region including two EF-hands and an IQ motif,
the NaV domain III-IV linker, and calmodulin. Calmodulin can bind to the IQ domain in both Ca2þ-bound and Ca2þ-free condi-
tions, but only to the DIII-IV linker in a Ca2þ-loaded state. The mechanism of Ca2þ regulation, and its composite effect(s) on
channel gating, has been shrouded in much controversy owing to numerous apparent experimental inconsistencies. Herein,
we attempt to summarize these disparate data and propose a novel, to our knowledge, physiological mechanism whereby
calcium ions promote sodium current facilitation due to Ca2þ memory at high-action-potential frequencies where Ca2þ levels
may accumulate. The available data suggest that this phenomenon may be disrupted in diseases where cytoplasmic calcium
ion levels are chronically high and where targeted phosphorylation may decouple the Ca2þ regulatory machinery. Many NaV
disease mutations associated with electrical dysfunction are located in the Ca2þ-sensing machinery and misregulation of
Ca2þ-dependent channel modulation is likely to contribute to disease phenotypes.

SODIUM CHANNEL ARCHITECTURE
AND INACTIVATION

NaVs are large ~250-kDa membrane proteins comprised of
four homologous domains (DI, DII, DIII, and DIV), each
housing six a-helical transmembrane segments that form
the voltage-sensing (Fig. 1 A: S1–S4, shown in gray and
red) and the pore-forming (S5–S6, in blue) modules. The
conductance of sodium ions through these channels is
exquisitely sensitive to changes in voltage, where, upon
opening, they allow the rapid inward flow of Naþ ions which
act to depolarize the cellular membrane. In mammals,
at least nine different NaV isoforms have been isolated
(NaV1.1–1.9). Within milliseconds of channel opening, the
influx of Naþ is reduced through a process known as ‘‘inac-
tivation’’ (Fig. 1 B). This process is distinct from the normal
‘‘closing’’, and presents a way for the channel to minimize
and regulate the depolarizing signal. Channels recover
rapidly from inactivation under normal conditions within
milliseconds, thus allowing for Naþ influx during the next
action potential. The inherent speed and efficiency of this
opening/inactivating cycle is imperative for the electrical
stability of the cell because small perturbations to the equi-

librium among open, closed, and inactivated channel states
can have devastating effects on electrical function.

Interestingly, NaVs can also inactivate directly from the
closed conformation, as visible in the steady-state inactiva-
tion (SSI) curve (Fig. 1 C). The amount of SSI effectively
controls the number of channels that are available for
opening, and is directly dependent on the membrane voltage
(1). In basal conditions near the resting membrane potential
of excitable cells (~�90 mV), a considerable fraction of
sodium channels are closed but ready to open upon depolar-
ization, and the other half are inactivated and therefore
unavailable to contribute to action potential firing. If the
SSI curve is shifted only 10 mV to the right (a depolarizing
shift), the number of available channels almost doubles.
Thus, seemingly small changes in the steady-state inactiva-
tion properties can have significant effects on channel avail-
ability, and therefore on the rhythm and stability of the
action potential.

The precise mechanism of NaV inactivation is not known,
but one possibility is that inactivation proceeds through
a hinged-lid mechanism (2) whereby the ~50 amino-acid
cytoplasmic linker between domains III and IV (DIII-IV)
acts as the lid to rapidly occlude the permeation pathway
(3). This scheme, albeit overly simplified, is likely accom-
panied by complementary motions within the pore region.
In addition to the DIII-IV linker and its putative binding
sites in the S4–S5 linker of domains III (4) and IV (5),
the inactivation complex includes the C-terminus of the
channel (6,7).
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FUNCTIONAL EFFECT OF Ca2D ON SODIUM
CHANNEL GATING

The consensus of published data supports the observation that
increased local cytoplasmic Ca2þ levels into the low micro-
molar range results in a ~10-mV depolarizing shift in the
steady-state availability relationship for NaV1.5 (6,8–12)
(Fig. 1C). Because the restingmembrane potential ismidway
along the falling phase of this relationship, seemingly minor
shifts in the equilibrium value can substantially increase the
amount of available channels to open for the next action
potential. However, a variety of effects mediated by cyto-
plasmic calcium has been reported, including effects on inac-
tivation rate (6) and slow inactivation (12,13). There also
seem to be isoform-specific differences, where shifts in the
steady-state availability curve can also be observed upon
coexpressing calmodulin or addition of short peptides, but
there is no consensus on these effects (13). How is it possible
that so many groups have reported conflicting results?

In addition to variable effects of EGTA and BAPTA, one
potential culprit is the composition of the patch pipette
solutions where CsF (typically >100 mM) is often used
to produce very stable whole-cell patch-clamp recording
conditions. However, fluoride avidly binds Ca2þ (KspK ~
3.45 � 10�11) (http://pubchem.ncbi.nlm.nih.gov), thus

effectively decreasing the free Ca2þ concentrations, espe-
cially in low buffering—suggesting that Ca2þ ion regulation
measured under such conditions occurs at lower levels of
free [Ca2þ]. Although Deschênes et al. (14) have reported
no difference in modulation between CsF for CsCl, this
outcome could differ among isoforms, and the precise
amount of CsF used. Moreover, the regions known to
support CaM binding and Ca2þ regulation, namely the
DIII-IV linker and the IQ motif, are also home to phosphor-
ylation sites (15,16), providing an intriguing form of addi-
tional regulation, but yet another confounding variable in
the laboratory setting. Lastly, sodium channels expressed
in different mammalian cell systems have yielded divergent
results in terms of Ca2þ regulation (17).

Ca2þ regulation of sodium channels could act through
a combination of mechanisms, including the direct interac-
tion of ions with EF-hand motifs in the C-terminus of
the channel, in addition to calmodulin-mediated effects.
Calmodulin (CaM) is a ~17-kDa protein that is able to
bind four Ca2þ ions through EF-hand motifs and the avail-
able data support a clear role for CaM in the Ca2þ-depen-
dent modulation of sodium channel inactivation; however,
considerable experimental variability exists. Coexpression
of CaM has been shown to produce a Ca2þ dependent
hyperpolarizing shift in the steady-state availability of
skeletal muscle NaV 1.4, but not of cardiac NaV 1.5 (14).
Chimeric ligation of CaM to the C-terminus of NaV1.4
suggests that a single CaM is sufficient to shift the
steady-state inactivation curve (18). The addition of
a CaM inhibitory peptide via the patch pipette does not
affect the Ca2þ-dependent shift in steady-state inactivation
(10), leading some investigators to conclude that CaM is
not essential to Ca2þ regulation. However, it is not known
how effectively the inhibitory peptide competes with intact
channels for binding to CaM, complicating the extrapola-
tion of such results.

CALMODULIN AND THE IQ DOMAIN

Isoleucine-glutamine (IQ) domains are well-described
motifs that were first reported for myosins as an interaction
motif for CaM-like essential light chains (19) and neuromo-
dulin (20). It is now clear that these motifs can form binding
sites for CaM or CaM-like proteins, with Ca2þ dependen-
cies and affinities differing in individual cases (21), and
with a generalized IQ motif consisting of [I,L,V]QXXXR
XXXX[R,K]. The C-terminal domain (CTD) of all NaV iso-
forms encodes an IQ-like domain, first identified in the
NaV1.1–1.3 isoforms (22) (Fig. 2), and in some isoforms
differs from the canonical IQ motif because it contains an
extra fifth residue between the two positively charged resi-
dues of the consensus sequence. IQ motifs also occur in
many other ion channels, including the closely related
voltage-gated calcium channel, where several Ca2þ/CaM-
IQ structures have been described in the literature (23–29).
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FIGURE 1 Sodium channel architecture, gating, and modulation by

calcium. (A(( ) Cartoon of a simplified sodium channel highlighting the

four homologous domains (DI–DIV), with six transmembrane segments

each (S1–S6). Voltage-sensing domain (gray, S1–S3 and red, S4); pore-

forming domain (blue, S5–S6). Cytoplasmic regions implicated in Ca2þ

modulation are indicated with inherited mutations (Asterisks(( ). (B) Repre-

sentative example of a rapid inward sodium current under patch-clamp

conditions in response to a 15-ms depolarizing pulse from �100 mV to

�20 mV, with the fast activation and inactivation indicated (arrow). (C)

Steady-state inactivation curve for NaV1.5 in the presence and absence of

10 mM free Ca2þ in the patch pipette. The data were generated with the

protocol shown (inset) where a cell under voltage-clamp is held at

�120 mV, stepped to a variable prepulse for 500 ms (to reach a new

steady-state equilibrium) before a test pulse to �20 mV is employed to

assay how many are available to open.
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Early studies identified that mutants of CaM in Parame-
cium tetraurelia could impact voltage gated sodium currents
in a lobe dependent manner (30,31). Numerous studies have
since reported that CaM interacts with the NaV IQ domain
(6,8,12–14,18,32–34). Using intrinsic tyrosine fluorescence
of CaM, the IQ motif peptide of NaV1.5 was shown to bind
apoCaM with ~160 nM KdKK , and Ca2þ/CaM with ~2 mM KdKK
(35) with similar values obtained using isothermal titration
calorimetry (8), suggesting that the NaV IQ domain is
primarily an apoCaM binding site. The interaction has
been confirmed via FRET (12,18) yet co-immunoprecipita-

tion experiments using GST fusion proteins of the CTD of
some isoforms have failed to report an interaction with
CaM (13). However, the folding and aggregation behavior
for these constructs have not been sufficiently established.

NMR structures have been solved for apoC-lobe bound
to the IQ domain of NaV1.2 (36) and for apoCaM bound
to the NaV1.5 IQ domain (37) suggesting that the apoC-
lobe is the primary binding partner for the IQ domain
(NaV1.5 residues 1901–1916), with major hydrophobic
contacts made by residues I1908 and F1912. Some
studies have shown that mutation of NaV1.5 residues

A

B

FIGURE 2 Conservation of calcium regulatory domains and the location of disease mutations. The DIII-DIV linker (A(( ) and proximal CTD (B) sequences

of NaV1.1–1.9 are aligned against NaV1.5. (Top) Human NaV1.5 numbering. (Right-hand side, down) Respective NaV1.1–1.9 numbering. From published

NMR and crystal structures, the available secondary structure elements are shown above the sequences: (arrows) b-strands; (coils) a-helices. Sites for disease

mutations are highlighted: LQT3 (black), BrS (red), or both (brown). The R1902Cmutation in NaV1.2 is causative of GEFSþ (blue). The IQ consensus motif

is indicated (black box) for NaV1.5.

Biophysical Journal 103(11) 2243–2251
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I1908A/Q1909A (IQ/AA), as well as the analogous muta-
tions in NaV1.2 and NaV1.4, disrupt IQ domain-CaM inter-
actions (13,18,32). However, more quantitative biochemical
approaches have shown that the IQ/AA mutation only
weakly affects binding, with only a twofold lower affinity
for both apoCaM and Ca2þ/CaM (35). In addition, the IQ/
AA mutation alone causes a hyperpolarizing shift in the
steady-state availability curve, and abolishes the calcium-
dependent shift (35), in addition to an increase in sustained,
noninactivating current (32). The IQ/AA mutation can also
reduce current amplitudes (13), which is apparently the
result of impaired channel trafficking (18).

Outright deletion of the IQ domain (stop-codon at amino
acid (aa) 1885 in NaV1.5) also reduces current amplitude,
produces a �11 mV shift in steady-state availability (38)
and increases the amount of noninactivating current (39)
Interestingly, the IQ deletion mutant has been reported to
retain a Ca2þ-dependent shift in steady-state inactivation,
suggesting that other players participate in the regulation
(12). However, overexpression of CaM or CaM1234 (a
mutant that is no longer able to bind Ca2þ in a physiological
range), in the absence of Ca2þ, can result in a depolarizing
shift of the steady-state inactivation curve, and the deletion
of the IQ domain abolishes this effect. This somewhat
surprising set of results has been explained by a model
whereby apoCaM/IQ domain association affects inactiva-
tion, independent of Ca2þ, and that the Ca2þ-dependence
of inactivation does not require this interaction.

Thus, as with the variable macroscopic effects of Ca2þ/
CaM on channel gating, the effects observed by different
laboratories seem in direct conflict, with some suggesting
the IQ motif is essential, whereas others concluding that
it is peripheral. One potential explanation is that the IQ
domain simply serves as a sink for a resident CaMmolecule,
where it serves to enrich CaM in the vicinity of the channel
but is not directly involved in the mechanism of Ca2þ-
dependent regulation. In this scenario, removing the sink
can be overcome by overexpression of CaM, and thus
different expression levels in the individual experiments,
as well as different inherent affinities of NaV isoforms for
CaM, could result in functional discrepancies.

EF-HANDS

The function and role of the CTD proximal EF-hand domain
has also been the subject of controversy. These two EF-hand
motifs, initially thought to be formed by NaV1.5 residues
1773–1852 (10), are actually encoded by NaV1.5 residues
1788–1862 as shown by NMR (40) (Fig. 3). A similar struc-
ture has been reported simultaneously and independently
for the NaV1.2 EF-hand domain (41) which extends further
toward the C-terminus (NaV 1.2 residues 1777–1882
equivalent to NaV1.5 residues 1773–1878), and includes
a partially ordered fifth helix. The EF-hand domain is linked
to the last transmembrane segment (IVS6; domain IV S6

segment) through a 13–15 aa flexible linker. As EF-hands
typically form Ca2þ-binding motifs, it is possible that the
Ca2þ-dependent effects on NaV inactivation are due, in
part, by direct Ca2þ ion binding to the EF-hands, absent
of a CaM contribution.

However, based on the NMR structure, the EF-hands are
predicted to bind, at most, one Ca2þ ion, as the second EF-
hand lacks prerequisite acidic residues for Ca2þ ion coordi-
nation, thus it is has not been determined if the sodium
channel EF-hands are functional or vestigial. However,
using either 2 mM BAPTA to simulate Ca2þ-free condi-
tions, or 20 mM CaCl2, Shah et al. (35) showed distinct
differences in 15N- 1H HSQC NMR spectra for a construct
spanning Nav1.5 (1773–1865), and titrations yielded a
KdKK ~ 7.5 mM, suggesting that Ca2þ ions are capable of
binding the EF-hands. Such a high KdKK value would be

FIGURE 3 Structure of the human NaV1.5 C-terminal domain. Crystal

structure of CaM bound to the NaV1.5 CTD (PDB:4DCK). Mg2þ-Calmod-

ulin (dark green N-terminus, blue C-terminus) and fibroblast growth

factor 13 (FGF13) (orange) are shown as part of a ternary complex from

PDB:4DCK. (Yellow spheres) Magnesium ions. Mutations that cause

LQT3 (black), BrS (red), or both (brown), are labelled. (f(( /ff s) Mutations

that cause frame shifts. (X) Nonsense mutations. (PrefixXX i) Insertions. The

NaV1.5 EF-hand domain, determined separately by NMR (PDB:2KBI),

is highlighted (dark gray). It is clear that the portion C-terminal to this

region forms interactions with the EF-hand domain. (Transparent green

spheres) Calcium ions in the EF-hands, showing where they would bind

based on structural superposition with Ca2þ-calmodulin. For clarity, only

the side chains of the IQ domain as well as missense mutation sites are

shown.
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physiologically irrelevant, but larger constructs (1773–
1920) yield a Kd between 1 and 6 mM, suggesting the affinity
is strongly affected by the C-terminal region including the
IQ domain binding to the EF-hands (10,35). Mg2þ was
not found to have an effect. In contrast, Kim et al. (32)
initially failed to detect any changes in Trp fluorescence
of the EF-hands at varying Ca2þ concentrations, but then
using 1H,15N chemical shifts during Ca2þ titrations of the
NaV1.2 and NaV1.5 EF-hands, they also found low affinities
for Ca2þ (Kd values between 1.6 and 3.3 mM) (41) However,
the largest chemical shifts were found outside of the
canonical EF-hand loop motifs, suggesting that Ca2þ binds
weakly near the N-terminus of helix I, the linker between
helices II and III, the C-terminus of helix IV, and the
partially structured helix V.

In terms of functionality of expressed channels, a
quadruple knock-out of Ca2þ binding to the EF-hands
(E1788A, D1790A, D1792A, E1799A) effectively removes
the Ca2þ-dependent shift in steady-state availability (10,12).
Of note, the locations of these mutations were based on an
early model of the EF-hands, and subsequent identification
in the NMR structure shows, surprisingly, that none of these
sites could be involved in coordinating Ca2þ. It is therefore
puzzling that these mutations abolish Ca2þ binding, espe-
cially when both CD and NMR did not detect any structural
changes (10). Further, the NaV1.5 double-mutant D1802A/
E1804A, which should knock out Ca2þ binding to the
EF-hands based upon the NMR structure, disrupted Ca2þ-
dependent shifts in the steady-state availability curve.

An additional level of complexity in Ca2þ regulation
emerges from several reports that the EF-hands and the IQ
domain can physically interact. NMR experiments indicate
binding of NaV1.5 residues 1897–1925 to an EF-hand
construct (residues 1773–1865), thus helping to explain
the difference in Ca2þ affinity between isolated EF-hands
and longer constructs (35). Consistent with this, mutation
of IQ/AA, which disrupts the EF-IQ interaction, lowers
the affinity (Kd ~ 4 mM). Isothermal titration calorimetry
(ITC) experiments between the EF-hands and IQ domain
suggest a Kd ~ 27–38 mM, and using NMR, the IQ domain
was mapped to bind between helices I and IVof the EF-hand
domain (40) However, these experiments were performed
on EF-hands as a distinct polypeptide from the IQ motif,
and it is not clear whether the same interactions also occur
in a physiological setting where both domains are within
the same polypeptide.

Transition-metal FRET studies have been used to measure
distances at three positions to a Trp residue within the
EF-hand region, and these were used as restraints to build
a model of the IQ domain bound to the EF-hands (42)
Thus, one step of the mechanism is that Ca2þ/CaM could
displace the EF-hands from the IQ domain, but as Ca2þ/
CaM-IQ binding is not affected by the presence of the
EF-hands (8), they could have the simple role of properly
positioning the IQ domain relative to the rest of the channel.

These elements have been recently captured in a crystal
structure of a near-full-length C-terminus, containing both
the EF-hands and IQ domain of the NaV1.5 isoform
(residues 1776–1928) in complex with apo-CaM and the
fibroblast growth factor homologous factor, FGF13 (43)
(Fig. 3). This structure further confirms the preferred
nature of the apo-C-lobe with the NaV IQ motif and high-
lights the residues that support the interaction. Although
considered an apo-CaM complex, Mg2þ is bound to the
C-lobe. However, the C-lobe interactions with the IQ
domain are very similar to the ones observed in the
apoCaM-IQ domain NMR structures (36,37) In addition,
no direct interaction between the EF-hands and the IQ motif
was observed.

COUPLING INACTIVATION TO Ca2D:
INTERACTION BETWEEN CALMODULIN
AND THE DIII-IV LINKER

Several studies have shown that CaM can interact with the
isolated NaV1.5 DIII-IV linker. Using both NMR and ITC,
Potet et al. (11) showed binding of Ca2þ-loaded CaM to
residues 1471–1523 of NaV1.5, with a Kd of 0.6 mM and
a 1:1 stoichiometry. In addition, a peptide corresponding
to NaV 1.5 1510–1530 binds Ca2þ/CaM with a Kd of
~8 mM and mutation of distal loop residues 1520–1522
FIF to AAA decreases the affinity of the latter peptide for
Ca2þ/CaM.

In contrast, it has also been shown that Ca2þ/CaM can
bind to the N-terminal portion of the DIII-IV linker (8,9).
Here, ITC experiments yield a Kd of ~3 mM, and demon-
strate that the interaction is driven by the Ca2þ/C-lobe,
and importantly, no binding is measured in the absence of
Ca2þ. Alanine scanning of several amino-acid residues
suggests that the Ca2þ/C-lobe forms major contacts with a
double Tyrosine motif (NaV 1.5 residues 1494 and 1495),
an observation that has been confirmed with a crystal struc-
ture that highlights intricate contacts between both tyrosines
and the Ca2þ/C-lobe (8) (Fig. 4). There are additional
energetically important contacts with M1498. Notably, no
portion of the DIII-IV linker was found to interact with
the Ca2þ/N-lobe, and whereas the isolated Ca2þ/N-lobe is
able to interact with the DIII-IV linker in vitro, the affinity
is extremely weak (Kd > 500 mM) and the binding site over-
laps with the Ca2þ/C-lobe site. Thus, in the physiological
setting the N-lobe is more likely to bind to a different site,
such as the C-terminal IQ domain.

The two reports on Ca2þ/CaM binding to the DIII-IV
linker are thus in conflict. However, full-length expressed
NaV1.5 channels containing the FIF/AAA or FIF/AIA
mutations, that have been proposed to eliminate CaM
N-lobe binding, still display a Ca2þ-dependent shift in
steady-state inactivation, minimizing the role, if any, for
the CaM N-lobe binding to the DIII-IV linker in Ca2þ regu-
lation (8,11). This suggests that the 1510–1530 peptide
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is not the functional binding site for Ca2þ/CaM within
intact channels. Indeed, as the DIII-IV linker is likely to
end around residue 1522 and become the transmembrane
helix of DIV S1, a substantial portion of this site may not
be available to cytoplasmic binding partners. Moreover,
mutation of M1498 (highlighted in the Ca2þ/C-lobe interac-
tion in the crystal structure) to alanine decreases the affinity
as measured by ITC, and abolishes the Ca2þ-dependent shift
in steady-state inactivation. In addition, introduction of
a mutant that enhances the affinity of the DIII-IV linker
for Ca2þ/CaM (E1489A/E1490A double mutant) also
increases the Ca2þ sensitivity for shifting the steady-state
availability curve. The correlation between loss of binding
with loss of modulation, and gain of binding with gain
of modulation, suggests that the Y1494/Y1495 motif as
observed in the crystal structure is physiologically relevant,
and although the distal DIII-IV linker FIF motif can bind
CaM, these side chains are clearly not necessary for Ca2þ

regulation.

A SIMPLIFIED MECHANISM FOR Ca2D

REGULATION OF SODIUM CHANNELS

In total, the in vitro and in vivo data using NMR, ITC, and
crystallographic approaches suggest a simple yet dynamic
lobe-switching mechanism for Ca2þ/CaM binding to intra-
cellular channel domains, and provides a testable model
biasing SSI inactivation in NaVs. In low Ca2þ levels,
apoCaM is bound to the C-terminal IQ domain via the
apoC-lobe, and as Ca2þ levels rise, Ca2þ/C-lobe gains
affinity for the DIII-IV linker, opening access to the Ca2þ/
N-lobe which now freely binds to the C-terminus IQ motif.

The constrained configuration of the Ca2þ/C-lobe bound to
the DIII-IV linker inherently destabilizes the interactions
between the DIII-IV linker and the inactivation gate
receptor. As the kinetics of inactivation of WT channels
are unaffected by Ca2þ, CaM dissociation from the DIII-
IV linker is not limiting. Indeed, the IFM motif known to
be essential for inactivation lies well outside of the Ca2þ/
C-lobe binding site. However, whether CaM does indeed
bridge the DIII-IV linker and IQ domain within intact
channels to form a tripartite complex remains to be fully
visualized.

Even though the above model may be attractive, several
additional complications remain. For one, mutations in
both the DIII-IV linker and the CTD can affect inactivation
in the absence of coexpressed CaM (44,45) For example,
both the DKPQ in the NaV1.5 DIII-IV linker, and a trunca-
tion of the CTD after the EF-hands (stop codon at aa 1885)
result in an increased sustained current (39) suggesting that
the DIII-IV linker and CTD may form a complex in the
absence of CaM (32,39,46). Indeed, ITC experiments
between isolated CTD and the DIII-IV linkers indicate
a KdKK of ~5 mM (46) and the interaction is only visible
with longer CTD constructs containing both the EF-hands
and IQ domain (39) However, other studies have failed to
see a direct interaction between the DIII-IV linker and
the CTD via ITC (8), a discrepancy that may be due to
a different choice of constructs, as the positive ITC experi-
ment made use of a longer CTD (ending at NaV1.5 residue
1937 instead of 1924) and DIII-IV linker (ending at 1523
versus 1522).

A PHYSIOLOGICAL ROLE FOR CALCIUM ION
REGULATION OF VOLTAGE-GATED SODIUM
CHANNELS: USE-DEPENDENT FACILITATION
OF CHANNEL AVAILABILITY

While the details of the mechanism of Ca2þ regulation
continue to unfold, it is worth considering the role such
a modulation might play in the physiological context. The
consensus effect on Ca2þ regulation of NaVs is a destabiliza-
tion of inactivation, which is manifest as an ~10-mV depo-
larizing shift in the steady-state availability relationship
(8,10,11,18). Because this relationship is at equilibrium at
physiological resting membrane potentials, roughly half
of the channels are inactivated at resting conditions, and
such a shift would significantly increase the number of
channels that are available to fire for the next action
potential.

How might this mechanism become relevant in an electri-
cally excitable cell such as a cardiac myocyte? One might
simply conclude that it would have little impact because
the upstroke of the cardiac action potential, where NaV
channels are open, precedes the ensuing Ca2þ transient.
However, a comprehensive synthesis of the available data
points toward a different type of regulation that could, in

FIGURE 4 Structures of the sodium channel DIII-DIV linker alone and

in complex with Ca2þ/CaM. Comparison between a Ca2þ/CaM-bound

human NaV1.5 DIII-DIV linker (PDB:4DJC) with the rat NaV1.2 DIII-

DIV linker (PDB:1BYY). The human NaV1.5 numbering is used. Mutations

that cause LQT3 (black), BrS (red), or both (brown), respectively. (D)

Deletion mutations. (Green) N-lobe of calmodulin, (blue) C-lobe, and

(green spheres) Ca2þ ions.
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theory, take place on a rate-dependent basis to encode for
a type of use-dependent facilitation. At low firing rates,
Naþ channels would sense diastolic, low Ca2þ levels and
the DIII-IV linker would not engage significantly with
the CaM-C-lobe. In addition, during the Ca2þ transient,
interactions between calcium ions and CaM, an effector
of Ca2þ regulation, would be functionally irrelevant as
most channels are inactivated, and Ca2þ would have time
to dissociate from CaM by the next upstroke of the action
potential. However, as the firing rate increases, and in
particular, when the rate of Ca2þ transient impinges upon
the Ca2þ/C-lobe dissociation kinetics, then a type of
Ca2þ memory would take place whereby Ca2þ ions would
still be bound to the CaM C-lobe at the beginning of the
next action potential. This would bias the steady-state
availability relationship to more depolarized potentials
and bring more NaV channels to drive the upstroke of the
action potential. Such a mechanism might not necessarily
destabilize electrical signaling because it would only be
employed transiently when having more channels would
be efficacious. Moreover, the domains and specific residues
that support the interaction between NaVs and Ca2þ/CaM
are highly conserved among all nine sodium channel iso-
forms, and this mechanism would be expected to be wide-
spread throughout the excitable cells of the cardiovascular
and nervous systems.

SIMILARITIES WITH VOLTAGE-GATED CALCIUM
CHANNELS

Voltage-gated calcium channels (CaVs) share a fair amount
of sequence identity with NaVs. Members of the CaV1 and
CaV2 families are also modulated by CaM binding to the
pore-forming a1 subunit. CaM can mediate at least two
Ca2þ-dependent feedback processes: Ca2þ-dependent inac-
tivation and Ca2þ-dependent facilitation (for a limited set of
examples, see Peterson et al. (48), Zülhke et al. (49), and
Lee et al. (50)). Like NaVs, CaV1 and CaV2 family members
encode EF-hands in the CTD, followed by an IQ domain
that is able to bind both Ca2þ/CaM and apoCaM, suggesting
that some of the mechanisms by which CaM alters inactiva-
tion may be conserved. However, there are some intrinsic
differences. The CaV IQ domain favors Ca2þ/CaM binding,
and both lobes contribute to binding of apoCaM and
Ca2þ/CaM (23,24,26,28). In addition, a second CaM
binding site is present between the EF-hands and the IQ
domain (25,29). Although only a single CaM is required
to mediate Ca2þ-dependent inactivation (51), this raises
the possibility that multiple CaMs can associate with
CaVs. No binding has been detected between CaM and the
CaV DIII-IV linker, although some CaV isoforms encode
a CaM binding site in the N-terminal region (52). Thus,
whereas some of the machinery seems conserved between
NaVs and CaVs, there are substantial discrepancies that
mediate the different functional effects in both channels.

DISEASE MUTATIONS IN THE CA2D-SENSING
MACHINERY

Sodium channel mutations have been linked to a wide range
of debilitating diseases, ranging from epilepsy (53) to
myotonia (54), erythermalgia (55), cardiac arrhythmias
(56) and migraine (57). Much attention has been given to
mutations in the NaV1.5 isoform, where gain-of-function
mutations which impair the inactivation process result in
the Long QT syndrome variant 3 (LQT3), a rare inherited
disorder that is associated with an increased propensity to
arrhythmogenic syncope, polymorphous ventricular tachy-
cardia, and sudden cardiac death (58,59). The first reported
LQT3 mutation, a deletion of three amino acids (KPQ) in
the inactivation gate, results in a small, but significant,
sustained sodium current over the duration of the action
potential (60), a phenotype displayed by many LQT3 muta-
tions. An additional seven LQT3 mutations have since been
found in the inactivation gate, with 10 in the EF-hand
region, and two between the EF-hands and the end of the
IQ domain (mutations available on www.fsm.it/cardmoc/).
Thus, the domains known to be essential to the NaV Ca2þ

regulatory apparatus (DIII-IV linker, EF-hand, and IQ-
motif) form hot-spot regions for LQT3 syndrome (61)
(Figs. 2–4). Thus, it is possible that disruption of Ca2þ

sensing may serve to compound the direct effects of muta-
tions on channel gating.

Loss of function mutations that result in reduced sodium
current of NaV1.5, mostly due to trafficking defects,
underlie Brugada syndrome (BrS) (62). As such, many of
the reported mutations provide truncated proteins that likely
do not fold. However, a number of point mutations not
resulting in truncations are present in the Ca2þ-sensing
machinery: eight within the inactivation gate, five in the
EF-hand region, and three following the EF-hands until
the end of the IQ domain (Figs. 2–4). It is likely that several
of these simply result in decreased folding stability of the
channels, and hence a decreased functional expression.

The NaV1.5 A1924T Brugada syndrome mutation,
located immediately C-terminal to the IQ domain, has
been shown to affect gating and Ca2þ regulation (6,35).
Additionally, the NaV1.5 D1790G LQT3 mutation in the
EF-hands, at the N-terminus of the first helix (Fig. 4)
reduces the Ca2þ-dependent shift in steady-state inactiva-
tion, and Trp fluorescence experiments indicate a ~20-fold
reduction in Ca2þ affinity (10,12). Compared to wild-type
channels, this mutation also significantly speeds up entry
into inactivation in high Ca2þ (12). The LQT3 NaV1.5
S1904L mutation near the IQ motif may affect the interac-
tion between the IQ domain and the EF-hands (42,46) and
reduces the affinity of the CTD for the DIII-IV linker to
a level that can no longer be quantified via ITC.

Inherited mutations in neuronal channels may also
impact Ca2þ sensing. The NaV1.2 R1902C mutation has
been linked to the inherited seizure disorder Generalized
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Epilepsy with Febrile Seizures Plus (GEFSþ). Located near
the IQ motif (Fig. 2), this mutation causes a threefold
reduction in the affinity for Ca2þ/CaM (63). In the NMR
structure of the NaV1.2 IQ motif complexed to apoC-lobe,
R1902 was not found to interact with CaM (36) However,
chemical-shift analysis indicates that Ca2þ/CaM binding
differs from apoCaM binding to the IQ domain, and
R1902 may therefore contribute to Ca2þ/CaM interactions.

CONCLUDING COMMENTS

The mechanistic basis for Ca2þ/CaM regulation of NaVs
has thus far been a difficult biological problem to solve.
Seemingly contradictory observations may be due to vari-
able experimental conditions and inherent differences
between NaV isoforms, in addition to overlapping, redun-
dant signaling pathways within NaV channels themselves.
In addition, while a growing number of experimental
approaches promise to bring clarity to a historically murky
topic, much mystery remains regarding the molecular
mechanism and physiological role of this potentially im-
portant regulatory process. NaV mutations associated with
inheritable excitability disorders are likely to also disrupt
Ca2þ sensing, and alternatively, given that many patholog-
ical disorders have chronically high Ca2þ levels, such as
in the failing heart or catecholaminergic polymorphic
ventricular tachycardia, it is feasible that targeted modula-
tion Ca2þ/CaM regulation of NaVs could be a novel thera-
peutic strategy for these largely untreatable diseases.
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18. Biswas, S., I. Deschênes, ., G. F. Tomaselli. 2008. Calmodulin regu-
lation of Nav1.4 current: role of binding to the carboxyl terminus.
J. Gen. Physiol. 131:197–209.

19. Cheney, R. E., and M. S. Mooseker. 1992. Unconventional myosins.
Curr. Opin. Cell Biol. 4:27–35.

20. Alexander, K. A., B. T. Wakim, ., D. R. Storm. 1988. Identification
and characterization of the calmodulin-binding domain of neuromodu-
lin, a neurospecific calmodulin-binding protein. J. Biol. Chem. 263:
7544–7549.

21. Bähler, M., and A. Rhoads. 2002. Calmodulin signaling via the IQ
motif. FEBS Lett. 513:107–113.

22. Rhoads, A. R., and F. Friedberg. 1997. Sequence motifs for calmodulin
recognition. FASEB J. 11:331–340.

23. Van Petegem, F., F. C. Chatelain, and D. L. Minor, Jr. 2005. Insights
into voltage-gated calcium channel regulation from the structure of
the CaV1.2 IQ domain-Ca2þ/calmodulin complex. Nat. Struct. Mol.
Biol. 12:1108–1115.

24. Kim, E. Y., C. H. Rumpf,., D. L. Minor, Jr. 2008. Structures of CaV2
Ca2þ/CaM-IQ domain complexes reveal binding modes that underlie
calcium-dependent inactivation and facilitation. Structure. 16:1455–
1467.

25. Kim, E. Y., C. H. Rumpf,., D. L. Minor, Jr. 2010. Multiple C-terminal
tail Ca2þ/CaMs regulate CaV1.2 function but do not mediate channel
dimerization. EMBO J. 29:3924–3938.

26. Fallon, J. L., D. B. Halling, ., F. A. Quiocho. 2005. Structure of
calmodulin bound to the hydrophobic IQ domain of the cardiac
Cav1.2 calcium channel. Structure. 13:1881–1886.

27. Halling, D. B., D. K. Georgiou,., S. L. Hamilton. 2009. Determinants
in CaV1 channels that regulate the Ca2þ sensitivity of bound calmod-
ulin. J. Biol. Chem. 284:20041–20051.

28. Mori, M. X., C. W. van der Kooi,., D. T. Yue. 2008. Crystal structure
of the CaV2 IQ domain in complex with Ca2þ/calmodulin: high-
resolution mechanistic implications for channel regulation by Ca2þ.
Structure. 16:607–620.

Biophysical Journal 103(11) 2243–2251

2250 Van Petegem et al.



29. Fallon, J. L., M. R. Baker,., F. A. Quiocho. 2009. Crystal structure of
dimeric cardiac L-type calcium channel regulatory domains bridged by
Ca2þ* calmodulins. Proc. Natl. Acad. Sci. USA. 106:5135–5140.

30. Kink, J. A., M. E. Maley,., C. Kung. 1990. Mutations in paramecium
calmodulin indicate functional differences between the C-terminal and
N-terminal lobes in vivo. Cell. 62:165–174.

31. Saimi, Y., and K. Y. Ling. 1990. Calmodulin activation of calcium-
dependent sodium channels in excised membrane patches of Parame-
cium. Science. 249:1441–1444.

32. Kim, J., S. Ghosh, ., G. S. Pitt. 2004. Calmodulin mediates Ca2þ

sensitivity of sodium channels. J. Biol. Chem. 279:45004–45012.

33. Mori, M., T. Konno, ., K. Nagayama. 2000. Novel interaction of
the voltage-dependent sodium channel (VDSC) with calmodulin:
does VDSC acquire calmodulin-mediated Ca2þ-sensitivity? Biochem-
istry. 39:1316–1323.

34. Theoharis, N. T., B. R. Sorensen, ., M. A. Shea. 2008. The neuronal
voltage-dependent sodium channel type II IQ motif lowers the calcium
affinity of the C-domain of calmodulin. Biochemistry. 47:112–123.

35. Shah, V. N., T. L. Wingo, ., W. J. Chazin. 2006. Calcium-dependent
regulation of the voltage-gated sodium channel hH1: intrinsic and
extrinsic sensors use a common molecular switch. Proc. Natl. Acad.
Sci. USA. 103:3592–3597.

36. Feldkamp,M. D., L. Yu, andM. A. Shea. 2011. Structural and energetic
determinants of apo calmodulin binding to the IQ motif of the NaV1.2
voltage-dependent sodium channel. Structure. 19:733–747.

37. Chagot, B., and W. J. Chazin. 2011. Solution NMR structure of
Apo-calmodulin in complex with the IQ motif of human cardiac
sodium channel NaV1.5. J. Mol. Biol. 406:106–119.

38. Cormier, J. W., I. Rivolta, ., R. S. Kass. 2002. Secondary structure of
the human cardiac Naþ channel C terminus: evidence for a role of
helical structures in modulation of channel inactivation. J. Biol.
Chem. 277:9233–9241.

39. Motoike, H. K., H. Liu, ., R. S. Kass. 2004. The Naþ channel inacti-
vation gate is a molecular complex: a novel role of the COOH-terminal
domain. J. Gen. Physiol. 123:155–165.

40. Chagot, B., F. Potet,., W. J. Chazin. 2009. Solution NMR structure of
the C-terminal EF-hand domain of human cardiac sodium channel
NaV1.5. J. Biol. Chem. 284:6436–6445.

41. Miloushev, V. Z., J. A. Levine, ., A. G. Palmer, 3rd. 2009. Solution
structure of the NaV1.2 C-terminal EF-hand domain. J. Biol. Chem.
284:6446–6454.

42. Glaaser, I. W., J. D. Osteen, ., R. S. Kass. 2012. Perturbation of
sodium channel structure by an inherited long QT syndrome mutation.
Nat. Commun. 3:706.

43. Wang, C., B. C. Chung, ., G. S. Pitt. 2012. Crystal structure of the
ternary complex of a NaV C-terminal domain, a fibroblast growth factor
homologous factor, and calmodulin. Structure. 20:1167–1176.

44. Viswanathan, P. C., C. R. Bezzina, ., J. R. Balser. 2001. Gating-
dependent mechanisms for flecainide action in SCN5A-linked
arrhythmia syndromes. Circulation. 104:1200–1205.

45. Mantegazza, M., F. H. Yu,., T. Scheuer. 2001. Role of the C-terminal
domain in inactivation of brain and cardiac sodium channels. Proc.
Natl. Acad. Sci. USA. 98:15348–15353.

46. Bankston, J. R., K. J. Sampson, ., R. S. Kass. 2007. A novel LQT-3
mutation disrupts an inactivation gate complex with distinct rate-
dependent phenotypic consequences. Channels (Austin). 1:273–280.

47. Reference deleted in proof.

48. Peterson, B. Z., C. D. DeMaria,., D. T. Yue. 1999. Calmodulin is the
Ca2þ sensor for Ca2þ-dependent inactivation of L-type calcium chan-
nels. Neuron. 22:549–558.
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Imaging Protein Structure in Water at 2.7 nm Resolution by Transmission
Electron Microscopy

Utkur M. Mirsaidov,†‡6 Haimei Zheng,§6 Yosune Casana,‡ and Paul Matsudaira†‡*
†Mechanobiology Institute and ‡Center for BioImaging Sciences, Department of Biological Sciences, National University of Singapore,
Singapore; and §Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California

ABSTRACT We demonstrate an in situ transmission electron microscopy technique for imaging proteins in liquid water at room
temperature. Liquid samples are loaded into a microfabricated environmental cell that isolates the sample from the vacuum with
thin silicon nitride windows. We show that electron micrographs of acrosomal bundles in water are similar to bundles imaged in
ice, and we determined the resolution to be at least 2.7 nm at doses of ~35 e/Å2. The resolution was limited by the thickness of
the window and radiation damage. Surprisingly, we observed a smaller fall-off in the intensity of reflections in room-temperature
water than in 98 K ice. Thus, our technique extends imaging of unstained and unlabeled macromolecular assemblies in water
from the resolution of the light microscope to the nanometer resolution of the electron microscope. Our results suggest that
real-time imaging of protein dynamics is conceptually feasible.
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‘‘The colder the better’’ is the common wisdom in structural
biology, and thus data are conventionally collected at cryo-
genic temperatures for x-ray crystallography and trans-
mission electron microscopy (TEM). Several decades of
research have shown that radiation damage is reduced sig-
nificantly at liquid nitrogen (1) or helium (2) temperatures.
Typically, a high-resolution structure is degraded through
bond breakage and rearrangements, as well as interactions
with highly reactive free radicals from the surrounding
solvent (3). It is believed these effects are minimized in cry-
oelectron microscopy by preserving structure in vitreous ice
of either cells by high-pressure freezing or molecules by
plunge freezing (4). However, one consequence is that struc-
tures are immobile and the mechanisms underlying function
are inferred from static states. Although dynamic processes
such as assembly and disassembly of proteins, and in vitro
motility of motor proteins are easily detected at the single-
molecule level by high-resolution fluorescence light micros-
copy, themolecular structure of proteins can only be achieved
at nanometer resolution by EM, NMR, or x-ray methods.

Fortyyears afterMatricardi et al.’s (5) report on the electron
diffraction patterns of hydrated flat catalase crystals in the
presence of water vapor, little progress has been made in
the direct imaging of proteins in liquids. Recently developed
techniques allow biological imaging of micron-scale objects
or labeled specimens by scanning EM (SEM) and TEM in
liquid (6–8). However, the direct imaging of nanometer-sized
proteins has not been achieved yet. Here,we show that protein
structures can be directly imaged in liquid water at ambient
temperature by TEM, where radiation damage to protein
structure in water is unexpectedly less significant than that
observed at 98 K. To study proteins in their native environ-

ment, we adapt methods from material sciences for studying
nanoparticle growth in solution at room temperature using a
liquid environmental cell operating in a 120 keV transmission
electronmicroscope (Tecnai T12; FEI, Hillsboro, OR) equip-
ped with a 4096�4096 pixel camera (Ultrascan; Gatan, War-
rendale, PA) (9) (Supporting Material). Other groups used
a similar approach to image whole cells in liquid water by
scanning transmission electron microscopy (STEM), which
visualizes gold nanoparticle labels to provide structural infor-
mation about cells with thicknesses of a fewmicrometers (7).
In this work, we focus on the direct imaging of protein struc-
tures in liquid water by TEM without the use of labels. The
technique involves a liquid cell that is microfabricated from
silicon and has an electron translucent silicon nitride
(Si3N4) membrane window with lateral dimensions of ~3 �
50 mm and a thickness of only 10 nm (Fig. 1 A). The use of
ultrathin (~10 nm) Si3N4 membranes for developing liquid
environmental cells has proven to be critical for direct TEM
imagingof protein structures in liquidwater. The protein solu-
tion is loaded into the liquid cell and forms a thin liquid film
(80–300 nm depending on the thickness of the indium spacer)
between the silicon nitridemembranes (SupportingMaterial).
In the electron microscope, the electron beam penetrates
through the top and bottom Si3N4 membranes and the
enclosed thin layer of liquid sample.

We imaged an acrosomal process (a crystalline bundle of
actin filaments) in liquid water by TEM, because its structure
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can be preserved to>7 Å in vitreous ice under a transmission
electron microscope (10), and we previously characterized
its radiation hardiness extensively at liquid nitrogen tem-
peratures (11). Initially, we were unable to detect the acro-
somes in liquid cells with a 0.5- to 1.0-mm gap and 50- to
100-nm-thick windows due to scatter and absorption from
water and Si3N4NN . However, when the thicknesses of water
and membranes were reduced, we were able to clearly detect
the acrosomes and identify the characteristic view along the
h0l projection with a¼ b¼ 147 Å, c¼ 762 Å (10,11). Fig. 1,
B and C, show the familiar patterns of bands and stripes
and well-defined zigzag features from actin subunits in the
filaments (10). Compared with images in vitreous ice, the
image contrast of the acrosomes in liquid water is lower
because of the additional thickness of the Si3N4NN windows.

To assess the quality and resolution of the images, we
measured the intensity of reflections from their Fourier trans-
forms (Fig. 1 D), displayed by an IQ plot (11,12) (Fig. 1 E).
The IQ values shown in Fig. 1 range from 1 (signal/noise
(S/N) ratio R 7) to 6 (S/N ratio > 1.1) (12). The highest-
resolution reflection (S/N ratio > 2) detected is the 2.7-nm
meridional arising from the helical rise of the actin sub-
units in filaments. Thus, at this resolution, when imaging
at 120 keV, actin structure is qualitatively preserved to a
similar extent in room-temperaturewater as in ice. Similarly,
MAP-stabilized microtubules (diameter: 25 nm) are also
imaged in 80-nm-thick water (Fig. 1 F). However, we are

unable to see the protofilament substructures, which are
visible at higher magnifications in ice. These images demon-
strate the feasibility of imaging proteins in water, but imme-
diately show that resolution is limited.

One major limit to resolution is the significant scattering
from the window that reduces the S/N ratio (Si3N4NN : Z ¼
10.6; water: Z¼ 4.8). As the membrane thickness increases,
we find that the contrast and resolution of the acrosome
images degrade. Here, we define the image resolution to be
the largest extent of the Fourier transform of the image with
amplitude with S/N ratio> 2. Thus, we obtained resolutions
of 2.7 nm, 5.1 nm, and 12.4 nm corresponding to membrane
thicknesses of 10 nm, 14 nm, and 25 nm, respectively (with
the same water thickness of ~300 nm; Supporting Material).

A second major limit to resolution is radiation damage
caused by high-energy electrons. Radiation damage to a
structure is first revealed by degradation or alteration of
the highest-resolution features, which is more pronounced
for organic polymers and biological specimens than for
inorganic materials (13). At very high electron doses, the
acrosomes in ice develop bubbles, whereas inwater the struc-
ture dries and darkens (Supporting Material). For periodic
structures and at lower electron doses, a more quantitative
measure of radiation damage is defined by the decay of the
Fourier peak amplitude. Our previous studies on imaging
of acrosomal bundles indicate that the tolerable dose
(D1/e), at which the amplitude of Fourier peaks (A/A(( 0) drops
by a factor of e, is ~25 e/Å2 under 400 keVelectron beam and
at cryogenic temperature (11). It is noted that the tolerable
electron doses for imaging powder samples and gelatin-
encapsulated samples are several times lower at room
temperature than in cryogenic conditions (1). To assess the
extent of structural damage of the bundle in liquid water at
room temperature, we measure the fall-off in intensity of
reflection as a function of electron dose as the same acrosome
is sequentially imaged. The amplitudes are normalized and
arranged into two groups, (i.e., 27–50 Å and>50 Å) accord-
ing to their reciprocal lattice sizes, and are plotted as a func-
tion of the electron dose (Fig. 2; also see Supporting
Material). The plots are fitted to a simple exponential decay
function for each case: A/A0 ¼ exp[�(D � D0)/D// 1/e], where
D0 is the electron dose delivered for the first image. For
acrosomes imaged in ice at 120 keV, D1/e(98 K) ¼ 31 5
3 e/Å2 for 27–50 Å and D1/e(98 K) ¼ 68 5 4 e/Å2

for >50 Å. However, when imaging in liquid water, we find
that contrary to expectations, the radiation damage is less in
water than in ice: D1/e(293 K) ¼ 35 5 2 e/Å2 for 27–50 Å
and D1/e(293 K) ¼ 110 5 5 e/Å2 for >50 Å. Because of
the limit in resolution from the Si3N4NN window, we are
currently unable to measure radiation damage on the high-
resolution features of the acrosome structure. Thus, it is not
feasible to directly compare the radiation damage with our
previous measurements for acrosomes imaged at 400 keV.

Previous studies reported increased radiation damage
to dried or glucose-embedded biological specimens at

FIGURE 1 Imaging proteins in a liquid cell. (A) The liquid cell is

assembled and a protein solution is loaded through two large

reservoirs that are then sealed by a gasket. The protein solution

is drawn by capillary force into the liquid cell and forms a thin

film between two 10-nm-thick Si3i N4NN membranes. (B) Low-magni-BB

fication image of 80-nm-diameter acrosomal bundles in liquid.

(C) An acrosomal bundle inCC h0l orientation. The unit cell is

boxed. (D) Fourier transform pattern from a portion of the imageDD

of the acrosomal bundle inC. Themeridional reflection at 2.7 nmCC

is circled. Red box: Unit cell reconstructed from reflections with

S/N ratio > 1.2. (E)EE IQ plot of the Fourier transform and the reso-

lution shells at 5 and 2.7 nm. (F) MAP-assembled microtubulesFF

show rod-shaped structures (enhanced contrast), whereas the

protofilament substructure is not resolved.
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room versus cryogenic temperatures (1,4,14). The similarity
between water and ice in tolerable electron dose for imaging
proteins is contrary to the previous expectation. We suggest
the difference lies in the mechanisms of radiation damage in
water versus in ice caused by radicals generated during elec-
tron irradiation. Free radicals have slower reaction rates (15)
and diffuse faster in 293 Kwater than in 98 K ice (16,17) (see
Supporting Material). Additionally, specimen movements
seen in ice are caused by two mechanisms: charging and
gaseous hydrogen buildup induced during radiolysis of water
inside the ice (18). These movements should be nonexistent
in liquid water. The combination of the slower reaction rate,
mobility of free radicals, and absence of distortion in water
may account for the comparable tolerable dose of electrons.
Another mechanism of damage is covalent bond breakage
from inelastic scattering of electrons. However, this damage
should be equivalent in aqueous and frozen water because
the scattering cross section is determined by the atomic
composition of protein and beam parameters. Thus, to our
knowledge, our study provides the first direct comparison
of radiation damage in water at room temperature versus in
ice at liquid nitrogen temperature for biological TEM.

Our results illustrate that unlabeled protein structures can
be imaged directly in water with a resolution of at least
2.7 nm, and the radiation tolerance of an acrosomal bundle
is higher in liquid water than in frozen ice. Our ability to
directly image proteins in water suggests that it may be
possible to study protein dynamics (e.g., the assembly/
disassembly or translocation of proteins) under physiolog-
ically relevant aqueous conditions with nanometer resolu-
tion. For decades, investigators have used biological labels
to study these events with fluorescence light microscopy
methods. This study provides the groundwork for future
nanometer-scale dynamic imaging without labels, and opens
what to our knowledge is a new avenue for biological TEM.

SUPPORTING MATERIAL

SupportingMethods,Discussion, eight figures, and references are available at

http://www.biophysj.org/biophysj/supplemental/S0006-3495(12)00065-3.
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Mechanosensing in T Lymphocyte Activation
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ABSTRACT Mechanical forces play an increasingly recognized role in modulating cell function. This report demonstrates
mechanosensing by T cells, using polyacrylamide gels presenting ligands to CD3 and CD28. Naive CD4 T cells exhibited
stronger activation, as measured by attachment and secretion of IL-2, with increasing substrate elastic modulus over the range
of 10–200 kPa. By presenting these ligands on different surfaces, this report further demonstrates that mechanosensing is more
strongly associated with CD3 rather than CD28 signaling. Finally, phospho-specific staining for Zap70 and Src family kinase
proteins suggests that sensing of substrate rigidity occurs at least in part by processes downstream of T-cell receptor activation.
The ability of T cells to quantitatively respond to substrate rigidly provides an intriguing new model for mechanobiology.
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Cells have the remarkable ability to respond to the mechan-
ical rigidity of the extracellular environment. This has been
explored predominantly in anchorage-dependent cells and
the specific context of integrin- and cadherin-based adhesion.
As a complementary system, we demonstrate here mechano-
sensing by T lymphocytes, key modulators of adaptive
immunity. T cells are activated through engagement of the
T-cell receptor (TCR) by peptide-bearing major histocom-
patibility complex proteins on antigen presenting cells within
a small (~70 mm2) cell-cell contact area termed the immune
synapse (1). This interface hosts additional receptor-ligand
interactions; engagement of CD28 on the T cell surface pro-
vides a costimulatory signal that augments TCR function and
is required for activation of naive T cells. The immune
synapse is also characterized by a dynamic cytoskeleton (2)
that transports clusters of signaling molecules, suggesting
a role of physical forces in T cell activation. Indeed, recent
studies show that the TCR is sensitive to forces (3,4), but
the full impact and mechanism of mechanosensing in
T cells remains unexplored.

In this report, the antigen presenting cell is replaced with
polyacrylamide gels presenting two activating antibodies
(see the Supporting Material), one against CD3 (epsilon
subunit, which upon binding activates the TCR complex)
and the other to CD28. Concurrent engagement of these
two receptors by appropriate antibodies immobilized on
rigid beads or planar surfaces is sufficient to induce T cell
activation. Notably, activation is not induced by soluble
anti-CD3 and anti-CD28. In this report, gel rigidity was
controlled by varying the amount of bis-acrylamide cross-
linker (5) yielding a core set of materials of bulk Young’s
moduli (E) between 10 and 200 kPa. Biotinylated anti-
CD3 and anti-CD28 antibodies were tethered to the
polyacrylamide using an acrylamide-modified streptavidin,
yielding a thin (micrometers thick), layer of antibodies

(Fig. S1 in the Supporting Material). The concentration of
acrylamide-streptavidin was adjusted to produce a single,
standard surface density of tethered proteins that will be
used for this study across all substrates. Please see the
Supporting Material for additional analysis of this approach.

Mouse naive CD4þ T cells were seeded onto polyacryl-
amide gels presenting a 1:1 mix of anti-CD3 and anti-
CD28, and secretion of IL-2 over a 6-h period was compared
across gels as a functional measure of activation using a fluo-
rescence-based, surface capture method (6). IL-2 secretion
was lowest on the softest (E ¼ 10 kPa) gels, and increased
with substrate rigidity (Fig. 1 A). A small, not statistically
significant decrease was observed on the 200 kPa vs.
100 kPa gel, possibly reflecting lower T cell accessibility
to the antibodies due to smaller gel pore size. IL-2 secretion
was not detectable on surfaces containing either anti-CD3 or
anti-CD28 alone (data not shown), reflecting the need for
both signals in T cell activation. Cell attachment also re-
sponds to substrate rigidity, with a lower density of cells
observed on the softest surface compared to the three stiffer
preparations (Fig. 1 A). Decreasing the gel rigidity below
10 kPa presented no further change in either cell response
(Fig. S2); the rest of this study focuses on the core range
of 10–200 kPa. These results suggest that cell response can
be divided into two ranges on the basis of Young’s modulus;
for rigidities of 25 kPa or higher, cells exhibit strong attach-
ment and a positive (but saturating) correlation of IL-2 secre-
tion with stiffness, whereas below this range, cells reduce
both attachment and IL-2 secretion. An alternative interpre-
tation of this data is that at the lower rigidities IL-2
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production is modulated by cell attachment density and not
directly by elastic modulus. This was addressed by seeding
cells at higher densities, as detailed in the Supporting
Material. On the 10 kPa gels, an increase in cell attachment
density to match that of the three stiffer gels resulted in
a minor, not statistically significant increase in IL-2 secre-
tion. Much larger increases in cell seeding density resulted
in a minor statistically significant increase IL-2 secretion,
but this was associated with a much larger increase in attach-
ment density. Cooperativity between cells thus has an effect
on cell activation that is small compared to mechanosensing.

Treatment of cells with blebbistatin (100 mM, Fig. 1 B)
abrogated the sensitivity of IL-2 secretion across the three
stiffest gels, indicating a role of cytoskeletal contractility
in cell response. This builds upon an earlier study showing
TCR signaling in response to B cells and anti-CD3 pre-
senting bilayers is reduced by blebbistatin treatment (7).
Notably, both IL-2 secretion and cell attachment on the
10 kPa gel remained lower than on the three stiffer gels, sup-
porting the idea that cell interaction with the 10 kPa gel is
fundamentally different than on the stiffer counterparts.

We next sought to determine whether mechanosensing is
mediated by CD3 or CD28. For these experiments, one of
the activating antibodieswas tethered to the planar polyacryl-
amide gels while the other was immobilized onto rigid, 4-mm
diameter polystyrene beads (Fig. 2 A). Varying the rigidity
of gels presenting anti-CD3 modulated IL-2 secretion re-
sembling that on surfaces presenting both anti-CD3 and
anti-CD28 (Fig. 2 B). In contrast, cells on gels presenting

anti-CD28 showed only a small and statistically insignificant
(analysis of variance (ANOVA), a¼ 0.05, n¼ 3) decreasing
trend in IL-2 secretion with increasing Young’s modulus.
A longer incubation time (16 h.) was required to obtain
measurable IL-2 secretion from these cells. This delayed
response may be related to the smaller surface presented by
individual beads compared to a gel, or that CD3 and CD28
were engaged on different faces of the T cell, a configuration
termed trans-costimulation that earlier studies show induces
lower levels of activation than the cis- counterpart (8). We
also note that a well-established method for activating
T cells is to provide anti-CD3 on a solid support and
anti-CD28 in solution. Surprisingly, soluble CD28 at concen-
trations of 2–20 mg/ml was ineffective in stimulating IL-2
secretion by cells on gels presenting anti-CD3. Together,
these results suggest that T cellmechanosensing is associated
with CD3 rather than CD28.

We next focused on proteins involved in T cell activation
as potential mechanisms of mechanosensing. Phospho-
specific antibodies were used to detect Zap70 (Tyr-493)
and an activation loop that is conserved across many Src
family kinase proteins (SFK) (9,10); available antibodies
cannot distinguish between phosphorylated Lck (Tyr-394)
and Fyn (Tyr-420), the two major SFK proteins involved
in T cell signaling. By 2 min following seeding, both anti-
bodies detected clusters of proteins in the cell-substrate
interface on the three stiffest surfaces (Fig. 3). In contrast,
cells on the 10 kPa gels were devoid of pZap70 and pSFK
clusters within the interior of the cell-substrate interface,
exhibiting only minor accumulations along the cell edge
(Fig. 3 A). Whole-cell measurement of pZap70 and pSFK
followed a similar pattern, being lower on the 10 kPa gel
than the 200 kPa preparation (Fig. 3 B). The 2 min time
point captures the early burst of Zap70 and SFK activity,
but similar patterns were also observed for sustained sig-
naling at 30 min (Fig. S3, A and C). Notably, cells on
the three stiffest surfaces were more spread than on the
10 kPa preparation (Fig. S3 A). Application of blebbistatin
did not affect the distribution or cellular levels of pZap70
and pSFK (Fig. S3, B and C; a ¼ 0.05, two-way ANOVA).

FIGURE 1 Rigidity-dependent activation of CD4D T cells. (A)

6-h IL-2 secretion and cell attachment correlate with Young’s

modulus, E. *EE P< 0.05, ** P< 0.005 compared to 200 kPa surface.

Data are mean 5 SD, n ¼ 7. (B) Inhibition of myosin-basedBB

contractility abrogates mechanosensing on surfaces of 25 kPa

or greater. * P < 0.05 compared to 200 kPa surface, n ¼ 3. Error

bars for nonblebbistatin controls are omitted for clarity.

FIGURE 2 CD3-mediated mechanosensing. (A) T cell (T)

interacting with an antibody-coated polystyrene (PS) bead and

underlying gel. (B) 16-h secretion of IL-2. *BB P < 0.05 compared

to 200 kPa gel. Data are mean 5 SD, n ¼ 3.
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Together, these results suggest that loss of cell attachment
and activation on the 10 kPa gel is associated with loss of
early TCR signaling, whereas mechanosensing on the stiff-
est gels is mediated by mechanisms downstream of Lck/Fyn
and Zap70. We note that for human cells interacting with
B cells or lipid bilayers, blebbistatin reduces pZap70 at
both the whole cell level and in microclusters at the cell-
bilayer interface (7). This may reflect differences in species
or ligand presentation, but the use of total internal reflection
microscopy to probe the thin (200 nm) cell-bilayer interface
(not possible at cell-gel contacts) may also explain these
results. Finally, we followed phosphorylation of Pyk2
(Tyr-580), a protein related to focal adhesion kinase, which
has additional roles in TCR signaling (11). Similar to SFK
and Zap70, clusters of pPyk2 were found in the cell-
substrate interface on the three stiffest gels, but were re-
stricted to the interface edge on the 10 kPa preparations
(Fig. S3, A and B). Unlike SFK and Zap70, whole-cell levels
of pPyk2 were independent of rigidity (Fig. S3 C). However,
blebbistatin induced a minor but statistically significant
decrease in pPyk2 (P < 0.01, two-way ANOVA) across
all substrates, suggesting that Pyk2 responds to cell contrac-
tility and may contribute to T cell mechanosensing.

Finally, we note that TCR and CD28 signaling is very
distinct in mechanism than the integrin and cadherin

pathways. Specifically, although CD3 and CD28 signaling
influences cytoskeleton dynamics, direct mechanical con-
nections between these structures have not been identified.
Mechanosensing through these pathways is thus a new
model in mechanobiology that sets a wider role of physical
forces in biology.

SUPPORTING MATERIAL

Materials andMethods, three figures, and references (12,13) are available at

http://www.biophysj.org/biophysj/supplemental/S0006-3495(11)05408-7.
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FIGURE 3 Rigidity-dependent early signaling. (A) Phospho-

specific immunostaining 2 min after seeding. (B) ComparisonBB

of whole-cell phosphorylation of early signaling proteins. Data
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Direct Measurement of the Mechanical Properties of Lipid Phases
in Supported Bilayers

Laura Picas, Felix Rico, and Simon Scheuring*
INSERM U1006, Institut Curie, Paris, France

ABSTRACT Biological membranes define not only the cell boundaries but any compartment within the cell. To some extent, the
functionality ofmembranes is related to theelastic properties of the lipid bilayer and themechanical andhydrophobicmatchingwith
functional membrane proteins. Supported lipid bilayers (SLBs) are valid biomimetic systems for the study of membrane biophys-
ical properties. Here, we acquired high-resolution topographic and quantitative mechanics data of phase-separated SLBs using
a recent atomic force microscopy (AFM) imaging mode based on force measurements. This technique allows us to quantitatively
map at high resolution the mechanical differences of lipid phases at different loading forces. We have applied this approach to
evaluate the contribution of the underlying hard support in the determination of the elastic properties of SLBs and to determine
the adequate indentation range for obtaining reliable elastic moduli values. At ~200 pN, elastic forces dominated the force-inden-
tation response and the sample deformationwas<20%of the bilayer thickness, at which the contribution of the support was found
to benegligible. TheobtainedYoung’smodulus (E) of 19.3MPaand28.1MPaallowedus toestimate thearea stretchmodulus (kA)
as 106 pN/nm and 199 pN/nm and the bending stiffness (kc) as 18 kBT and 57 kBT for the liquid and gel phases, respectively.
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The concept that lipid bilayers are not just a simple passive
beholder of membrane proteins is now well accepted. It is
important to note that membranes are heterogeneous, with
local associations of lipids (and proteins) in detergent-resis-
tant membrane (DRM) domains or rafts (1,2).

In general, membrane dimensions and mechanical proper-
ties (i.e., bilayer thickness, bending and stretching stiffness,
or membrane tension) modify the function not only ofmecha-
nosensitive proteins but of any membrane protein (3). In this
framework, the mattress model is in favor of the importance
of the lipid environment and provides an elastic model of lipid
bilayer behavior (4). As a consequence of the established
importance of bilayer compliance and lateral organization of
membranes, a large number of techniques (includingmicropi-
pette aspiration, surface force apparatus, biomembrane force
probe or atomic force microscopy imaging, and force
spectroscopy) have been employed to give insights into the
structure and mechanical properties of biological membranes
(5–8). Among them, atomic force microscopy (AFM) (9) in
particular has been used to address fundamental questions
on the nanomechanics of supported membranes (10).

Here, we introduce a novel, to our knowledge, AFM-based
imaging technique, PeakForce-QuantitativeNano-Mechanics
(PF-QNM), to probe the structural and mechanical properties
of SLBs. PF-QNM allows simultaneous imaging and quanti-
tative mechanical mapping of the sample, both at submolecu-
lar resolution (11), and, it is important to point out, improves
acquisition time and spatial resolution compared to other
AFM-based techniques, such as force volume. This is
achieved by oscillating the sample in the z axis at a given
amplitude (tens of nanometers) and frequency (2 kHz), thus
providing cycles of force-distance (FnD) curves in which

the tip intermittently contacts the sample surface. Each FnD
plot is thereafter analyzed to determine the mechanical prop-
erties of the sample (Fig. S1 in the Supporting Material), thus
coupling topography analysis with stiffness and deformation
assessment at high resolution.

The aim of this study was to probe the mechanical prop-
erties of biological membranes in the elastic regime. We
present measures of the elastic properties (i.e., Young’s
modulus) of different lipid phases, and characterize the
effect of the underlying hard substrate.

Nanomechanical mapping of SLBs was performed on
DOPC/DPPC (1:1, mol/mol) membranes (Fig. 1), which is
one of the best-characterized SLBs and is commonly used as
a straightforward model membrane for AFM studies (12,13).
DOPC/DPPC bilayers display phase separation at room
temperaturebetween liquid (La) andgel (Lb) phase, as a conse-
quence of the different transition temperatures of DOPC and
DPPC (�20�C and 41�C, respectively) (14). The presence
of two segregated domains was readily detected by means of
AFM topography with heights for liquid and gel phases of
4.1 5 0.2 nm and 5.3 5 0.4 nm, respectively, over the mica
support (see Fig. S2), which is in agreement with previous
observations (12). It is worthy of note that DOPC has two
18Cwith one unsaturation (18:1) andDPPC has two 16C fully
saturated hydrocarbon chains. These structural differences
account not only for the different transition temperatures,
more densely packed and gel-like ordered structure for
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DPPC, and liquidlike behavior for DOPC at room tempera-
ture, but also for other physicochemical properties, including
differences in breakthrough forces, response to detergent addi-
tion, etc. (6,12). Indeed, using PF-QNM AFM imaging, we
observed that the gel phase was systematically stiffer than
the liquidphase (Figs. 1 and2).Given the thinness of lipidbila-
yers, the contribution of the underlying hard mica substrate
must be a matter of careful consideration. To address this
sensible question, we employed PF-QNM at different loading
forces (100 pN, 200 pN, 300 pN, 400 pN, and 550 pN). The
Young’s modulus of SLBswas determined by fitting the Hertz
model to retracting curves at each applied force (Fig. S1). The
resulting topography and nanomechanical maps document
force-dependent height (nm), stiffness (MPa), and deforma-
tion (nm) behavior of the DOPC/DPPC SLBs (Fig. 1).

As expected, the obtained average stiffness values increased
with increasing loading force,with thegel phase stiffer than the
fluid phase at all loads (Fig. 2 A). The degree of deformation
followed a similar trend (Fig. 2 B), except at very low loading
forces (100 pN), where a high apparent deformation (1.2 nm)
was observed as a result of long-range electrostatic forces that
dominated the interaction over elastic forces (Table S1).

The force-indentation relationship of a parabolic tip in-
denting a thin layer has been developed and validated on

thin layers of soft gels (15). According to this theoretical
approach, the overestimation of E is small (<25%) when
the indentation is <20% of the sample thickness. Thus,
at forces of ~200 pN, where the deformation is ~1 nm,
PF-QNM mapping provides reliable values of the actual
bilayer elastic modulus of 19.3 MPa and 28.1 MPa for the
liquid and gel phases, respectively (Table S1). Even though
it is difficult to asses the validity of continuous models at the
nanometer scale, and possible nonlinear strain hardening
may occur, our values were also confirmed by determining
E on supported lipid vesicles (Fig. S3). Moreover, our
results show that gel-phase lipids are stiffer than fluid-phase
lipids, though the former are thicker than the latter.

Themeasured Young’s modulus on the gel- and fluid-phase
bilayers allowed us to calculate the area stretch modulus (kAk )
and bending stiffness (kckk ), by invoking thin shell theory

kAk ¼ Eh=
�
1� v2

�
and kc ¼ Eh3=24

�
1� v2

�
;

where n is the Poisson ratio, assumed as 0.5, and h is the
bilayer thickness (7). From our results, we estimated kAk at
106 pN/nm and 199 pN/nm and kc at 18 kBT and 57 kBT for
the liquid and gel phases, respectively. Previous estimations
from micropipette aspiration and AFM-based methods were
in quantitative agreement with our results (7,8,16). However,

FIGURE 1 PF-QNM images showing the topography (nm) (left),tt

stiffness (MPa) (middle), and deformation (nm) (e right) attt

different peak loading forces (100 pN, 200 pN, 300 pN, 400 pN,

and 550 pN). The false color scale is 12 nm for height, 120 MPa

for apparent stiffness, and 6 nm for deformation.

FIGURE 2 Graphical representation of stiffness (A) and defor-

mation (B) as functions of the peak loading force for both fluidBB

and gel phases. Data are shown as the mean 5 SD.
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we found a considerably high bending stiffness in the case of
the SLB in the gel phase, which to our knowledge has not
been calculated before. Themeasured thickness andmechan-
ical properties between the two phases allow us to estimate
the energetic cost due to bilayer deformation to be 0.81 kBT
and 0.36 kBT for DOPC and DPPC, respectively (see Sup-
porting Material), which is in conceptual agreement with
previous works (13,17). Thus, even though the energetic
cost of mixing is low, it is sufficient for phase separation.

The improved time and lateral resolution of PF-QNM
offered us more physical insight about SLB mechanical
properties (Fig. 3). The stiffer gel-lipid phase can be under-
stood by the lower mobility and tighter order of DPPC lipid
tails. According to this interpretation, one could suggest that
the edges between DOPC and DPPC would have interme-
diate stiffness, as lipids might be more disordered and
mobile at phase edges. We observed slight changes in
mechanics at phase edges on the order of ~10 nm, suggest-
ing that the lateral range of this effect is short.

Our approach illustrates the suitability of PF-QNM AFM
for the nanomechanical mapping of membrane models at
high resolution and sufficient sensitivity to detect the prop-
erties of lipid phases. Our results suggest that at moderate
indentations, determination of the stiffness is actually not
perturbed by the solid support, thus providing reliable
values of the Young’s modulus. However, relative differ-
ences between lipid phases become more obvious at high
applied forces. Accordingly, we propose that the high spatial
resolution and sensitivity of the applied technique might be
used to mechanically detect DRMs or rafts on cell surfaces
before they can be directly visualized.

SUPPORTING MATERIAL

Materials and Methods, two figures, a table, and references are available at

http://www.biophysj.org/biophysj/supplemental/S0006-3495(11)05352-5.
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FIGURE 3 PF-QNM images at the lipid phase boundary showing

the topography (nm), stiffness (MPa), and deformation (nm) at 200

pNpeak loading force. The false color scale (from top tobottom) is

6 nm, 60 MPa, and 4 nm. Cross section of the trace (blue line) ande

retrace (red line) along the white dashed line for topography, stiff-e

ness, and deformation (average of three consecutive lines).
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ABSTRACT Using two-photon fluorescence anisotropy imaging of actin-GFP, we have developed a method for imaging the
actin polymerization state that is applicable to a broad range of experimental systems extending from fixed cells to live animals.
The incorporation of expressed actin-GFP monomers into endogenous actin polymers enables energy migration FRET
(emFRET, or homoFRET) between neighboring actin-GFPs. This energy migration reduces the normally high polarization of
the GFP fluorescence. We derive a simple relationship between the actin-GFP fluorescence polarization anisotropy and the
actin polymer fraction, thereby enabling a robust means of imaging the actin polymerization state with high spatiotemporal
resolution and providing what to the best of our knowledge are the first direct images of the actin polymerization state in live,
adult brain tissue and live, intact Drosophila larvae.

INTRODUCTION

Actin exists in cells in a dynamic equilibrium between
monomeric and polymeric forms: g-actin and f-actin,
respectively. Polymeric f-actin constitutes one of the prin-
ciple components of the cytoskeleton and is involved in
molecular scaffolding, cell motility, and myosin-based
trafficking. Monomeric g-actin, on the other hand, exists
as a cell-wide pool that serves as a ready source or sink of
monomeric subunits to and from f-actin. The dynamic equi-
librium between the two forms of actin is regulated by the
cell locally, rapidly, and bidirectionally.

Given the central role for actin dynamics in a broad spec-
trum of cell function, it is of considerable interest to be able
to image the polymerization state in live cells and tissues
with high spatial and temporal resolution. Despite this
need, there are few robust methods for directly imaging
the actin polymerization state.

Methods for probing the actin polymerization state can be
categorized either as indirect (utilizing a nonactin fluores-
cent probe that binds polymeric f-actin), or direct (utilizing
fluorescently labeled actin). Phalloidin staining, an indirect
probe, represents the gold-standard for labeling f-actin;
however, it can only be applied to fixed cells and tissue,
and therefore provides limited information about dynamics.
A number of live cell indirect probes have been developed
that we will return to in the Discussion.

Among the direct probes of actin polymerization, single-
molecule-based techniques such as fluorescence speckle
microscopy (1) and photoactivation localization microscopy
(2) are most informative in cultured cells, but are computa-
tionally intensive and difficult to extend to live tissue.

Themost broadly applicable approach to directly probe the
actin polymerization state utilizes Förster resonance energy

transfer (FRET) between coexpressed actin-CFP and actin-
YFP. Incorporation of actin-CFP and actin-YFP into endoge-
nous f-actin occasionally brings CFP and YFP into close
proximity (<100 Å), resulting in FRET and an enhancement
in the YFP/CFP fluorescence ratio. This approach has been
applied in solutions of purified protein (3,4) aswell as in tissue
culture (5). For clarity, wewill refer to the physical process of
excitation energy transfer between any two molecules as
‘‘FRET’’ and the technique that utilizes energy transfer spe-
cifically between different fluorophores as ‘‘heteroFRET’’.

We present here an imaging method and analytical frame-
work that utilizes energy migration FRET (6,7) (emFRET;
also called homoFRET, homotransfer, energy migration) to
directly probe the actin polymerization state quantitatively.
EmFRET, like heteroFRET, is based on a resonant transfer
of electronic excitation energy between two or more fluoro-
phores. Unlike heteroFRET, emFRET occurs between fluo-
rophores of the same type if the absorption and emission
spectra overlap. Because the interacting fluorophores are
identical, emFRET does not change the fluorescence color
or lifetime ((7–10), and see Section S1 in the Supporting
Material). However, because the emission dipoles of interact-
ing fluorophores are seldom exactly parallel, emFRET does
change the fluorescence polarization and can therefore be
detected by polarization-sensitive modalities. The advan-
tages of a single fluorophore technique such as emFRET
over a dual fluorophore technique such as heteroFRET are
numerous, including simplicity of experimental design, effi-
ciency of FRET pair formation, and the potential for using
already existing transgenic animals expressing actin-GFP.
We will expand upon this comparison in the Discussion.

EmFRET has been used extensively to study the aggrega-
tion and structure of purified, labeled proteins. Its use in
cells, although less common (for review, see Chan et al.
(11)), has seen a number of promising applications and
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seminal developments of the experimental and theoretical
tools necessary to derive information about intracellular
molecular structure from images of emFRET-induced fluo-
rescence depolarization (7,9–13). Much of the interest in
these studies has been to extract oligomer structural parame-
ters, for which time-resolved anisotropy measurements
provide the most detailed information. Because a lifetime
image typically requires minutes to acquire, this approach
is of limited utility in imaging fast cellular dynamics (<10 s).

Our purpose is not to obtain structural details of f-actin,
but rather to image the actin polymer fraction with a resolu-
tion sufficient to observe its characteristic rapid and highly
localized dynamics in live cells, including neurons and their
synapses. To this end, we employ steady-state two-photon
anisotropy imaging to provide the requisite high spatiotem-
poral resolution. We also derive a relationship between
anisotropy and the actin polymer fraction with which we
can calculate images that are proportional to the actin poly-
mer concentration. This relationship can be validated using
f-actin specific stains. Although two-photon excitation is not
necessary for anisotropy imaging, it provides a greater
dynamic range for anisotropy due to enhanced excitation
photoselection and it enables the technique to be easily
extended from fixed cells to living tissue.

METHODS

See Sections S7–S12 in the Supporting Material.

RESULTS

Theoretical relationship between fluorescence
anisotropy and the actin polymerization state

Actin-GFP fluorescence is highly polarized. This polariza-
tion is altered when actin-GFP incorporates into an endoge-
nous actin polymer and undergoes FRET with other nearby
incorporated molecules of actin-GFP. Although we empiri-
cally measure the fluorescence polarization anisotropy of
actin-GFP, we are ultimately interested in its polymerization
state. We must therefore derive the relationship between
anisotropy and polymerization state.

Energy transfer between polymer-incorporated
actin-GFP

Consider an actin polymer of sites -M to N with actin-GFP
randomly incorporated into it (Fig. 1 A). Any two actin-GFP
occupied sites j,k are capable of FRET with a rate FjkF ,

FjkF ¼ 3R6
0

2t

k2jkk����R.jk

����6; (1)

where R
.

jk ¼ R
.

k � R
.

j is the vector between the two chro-
mophores and the orientation factor,

k2jkk ¼ ��bmjm , bmk

�� 3
�bm j , bRjk

��bmk , bRjk

��2
;

accounts for the relative orientation of the unit transition
dipoles bmjm and bmk . For the GFP mutant used in most of the
experiments presented here (Emerald-GFP), the fluores-
cence lifetime (t) was found to be 2.49 5 0.05 ns (see
Section S1 in the Supporting Material) and the GFP-GFP
Forster radius (R0) was calculated to be 45.8 Å in tissue
(refractive index 1.4), comparable to that for GFP-GFP
(46.5 Å) and CFP-YFP (49.2 Å) in solution (14).

F-actin is a helix in which adjacent monomers are rotated
by an angle q¼ 166� with respect to one another and axially
offset by Az¼ 27.5 Å. This well-defined structure relates the
position of an actin N-terminus (where GFP is attached), A

.

j,
to its site index number j (3,15),

A
.

j ¼ Axy cosðjðð qÞbx þ Axy sinðjðð qÞby þ Azjzz bjjz; (2)

where Axy ¼ 35 Å is the radial distance of the N-terminus
from the helix axis.

FIGURE 1 (A(( )Model of actin-GFPmolecules randomly incorporated into

an actin filament. (B) The long flexible linker (green line) connecting actin

to GFP has an en-to-end vector L (purple arrow(( ) with orientation angles

qL and 4L. (C) The GFP chromophore vector C (blue arrow) rotates freely

at the end of the linker with orientation angles qC and 4C. The orientation

angles arewith respect to the local helix radius vector at the actinN-terminus,

r. The tangent planeW is a noninteracting wall; both the linker and chromo-

phore vectors are allowed tomove outside (to the right of) this wall. TheGFP

barrel drawn with the green dotted line in panel C represents the limit of

motion for the GFP tag—the GFP semidiagonal dG cannot crossW.WW
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The actin N-terminus is attached to GFP by an 8 aa
flexible linker. Moreover, the C-terminal 10 residues of
Emerald-GFP have no secondary structure and are linked
to the GFP b-barrel at a glycine residue (Gly229). We there-
fore model actin-GFP as two rigid structures (actin and
GFP(1–229)) linked by an 18-amino-acid, unstructured
polypeptide chain (see Section S2 in the Supporting
Material). An unstructured polypeptide chain whose contour
length (lc ¼ 68.4 Å for 18 aa) greatly exceeds its persistence
length (lpl ¼ 3.04 Å (16)) can be modeled as a Gaussian
chain with an end-to-end vector L

.

j whose magnitude
follows the probability distribution

P
�
LjL
� ¼ PL0L

2
jL exp

 
�3L2

jL

4lpl lc

!
; (3)

where PL0 is a normalization constant. Although the contour
length of the linker is long, its high flexibility makes its
trajectory in space a random walk, resulting in a relatively
short mean end-to-end distance (hLjL i ¼ 19 Å). Finally, if
C
.

j is the vector from the linker attachment point at Gly229

to the GFP chromophore (jC.jj ¼ 24 Å, Protein DataBank
entry 1GFL), then the chromophore position vectors are
R
.

j;k ¼ A
.

j;k þ L
.

j;k þ C
.

j;k and the vector between the chro-
mophores is

R
.

jk ¼ R
.

k � R
.

j ¼
�
A
.

k þ L
.

k þ C
.

k

�
�
�
A
.

j þ L
.

j þ C
.

jC
�
: (4)

We treat the tangent plane at the actin N-terminus as a nonin-
teracting wall (dashed line W,WW Fig. 1, B and C) to simulate
steric hindrance from the actin filament. The linker ðL.Þ
and chromophore ðC.Þ vectors are permitted to move freely
only in the half-space outside this wall (see Section S3 in the
Supporting Material).

Fluorescence and FRET occur during the lifetime of the
excited state (2.5 ns for Emerald GFP), substantially faster
than the rotation time of GFP (15–20 ns). Hence, any single
GFP has a nearly fixed position/orientation during the evolu-
tion of a single excitation. In a typical imaging experiment,
however, the pixel dwell time (1–10 ms) is long in compar-
ison to the timescale of molecular motion and involves
many excitations, while the focal volume contains many
GFPs (~102–103 at 1 mMGFP concentration). Therefore, the
population of excited GFPs in a focal volume, over a pixel
dwell time, can be considered to sample all possible posi-
tions/orientations with respect to their parent actin filaments.
To account for this in the theory below,we perform an ensem-
ble average (hxi) of fluorescence-based quantities, defined
as an average over all possible positions and orientations of
the interacting GFP transition dipoles (that is, over all
possible lengths and orientation angles of

.
Lj;

.
CjC ; and bmjm ),

weighted by their respective probabilities of occurrence.
The ensemble average is calculated using a Monte Carlo
approach (see Section S4 in the Supporting Material) similar

to that used by Blackman et al. (10) in modeling concentra-
tion dependent fluorescence depolarization.

For a lone pair of interacting GFPs on an actin filament,
we suppose a single excitation begins on the donor at site
0. Then the probability that the emission occurs from the
acceptor at site k is known as the fractional quantum yield
of site k and is simply related to the FRET rate, Fk/kk Ftotal ¼
F0FF kt/(1tt þ 2F0FF kt) (17), where Ftotal is the fluorescence
quantum yield (0.68 for Emerald-GFP). The ensemble
average fractional quantum yield, as a function of the
acceptor site index jkj, gives us a picture of how well a pair-
wise FRET interaction transfers energy directly between
sites on an actin filament (Fig. 2 A, red diamonds). We
use the absolute value of the site index here as the actin fila-
ment is symmetric about site 0. Energy transfer from the
donor at site 0 is overwhelmingly to its next-to-nearest
neighbors at jkj ¼ 2 and becomes negligible beyond jkj ¼ 4,
a conclusion that we will utilize shortly.

Energy migration in an incompletely labeled
polymer

Actin-GFP competes with endogenous g-actin to incorpo-
rate into f-actin, resulting in an actin filament sporadically
labeled with GFP. To account for this incomplete labeling,
we modify the theory of fluorescence depolarization due
to energy migration between aggregated fluorophores as
originally developed by Craver and Knox (17). We define
the labeling (‘j‘ ) of each site j as ‘j‘ ¼ 1 if it is occupied by
actin-GFP and ‘j‘ ¼ 0 if it is occupied by endogenous actin.

Suppose a single excitation begins on an actin-GFP at an
arbitrary site that we label ‘‘0’’. Then the probability of
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FIGURE 2 (A(( ) Ensemble average fractional quantum yield as a function

of site number jkj. Energy transfer from the initially excited site 0 directly

(Pairwise, red diamonds) to another site is overwhelmingly to the jkj ¼ 2

sites. On a fully labeled polymer (Migration, blue circles), the spread of

excitation energy to even sites is facilitated by migration but is nonetheless

restricted largely to jkj ¼ 2 and 4 sites. (B) Simulation of a probabilistically

labeled filament shows that t�1h(G�1)00i is linearly dependent on the

labeling density ð‘Þ of f-actin (each point is mean 5 SD, 105 iterations).
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finding an excited state at site j (rj(t)) is governed by the
master equation,

drjðtÞ
dt

¼ �rjðtÞ
t

�
XN
k¼�M
ksj

‘j‘kFjkrjðtÞ þ
XN

m¼�M
msj

‘j‘mFmjrmðtÞ; (5)

with the temporal boundary conditions r0(t ¼ 0) ¼ 1,
r0(t ¼ N) ¼ 0, and rjs0(t ¼ 0) ¼ rjs0(t ¼ N) ¼ 0. This
is essentially the master equation of Craver and Knox (17)
with additional ‘j,k,m terms to account for the incorporation
of actin-GFP. The first term on the right side of the equation
represents the rate of spontaneous decay, and the second and
third terms, respectively, represent the FRET rate from and
to site j. The summations are over all polymer sites;
however, because FRET becomes negligible beyond a sepa-
ration of four sites, the full summation can be approximated
by a sum over k (and m) ¼ j�4 to jþ4, s j.
This system of linear differential equations can be

rewritten as

drjðtÞ
dt

¼ �
Xjþ4

k¼ j�4

GjkrkðtÞ; (6)

where Gjk is the Craver-Knox matrix of coefficients, whose
index j runs from -M to N to preserve the polymer site index
notation,

Gjk ¼ �‘j‘kFkj

�
1� djk

�þ
0B@1

t
þ
Xjþ4

m¼ j�4
msj

‘j‘mFjm

1CAdjk: (7)

Once the G matrix is defined, the fractional quantum yield
of site n is (8,17)

Fn

Ftotal

¼ ðG�1Þ0n
t

; (8)

and the fluorescence anisotropy of the polymer is given by

rp ¼ r0
F0

Ftotal

þ ret

�
1� F0

Ftotal

�
¼ r0

ðG�1Þ00
t

þ ret

�
1� ðG�1Þ00

t

�
: (9)

Here r0 is the anisotropy of the fluorescence arising from the
initial directly excited site. Fluorescence from the initially
excited site may directly follow excitation, or it may follow
excitation and energy migration away from, and back to,
that site. Because GFP is essentially motionless on the time-
scale of energy transfer, fluorescence following energy
migration away from, and back to, the initially excited site
will have the same polarization as if the energy had never

left. Hence, the anisotropy of fluorescence from directly
excited sites will be equal to that of a monomer (r0 /
rm). The value ret is the anisotropy of the fluorescence
from sites excited via FRET. It is generally held, and we
confirm for polymer incorporated actin-GFP (see Section
S5 in the Supporting Material), that even a single energy
transfer is adequate to largely depolarize fluorescence, i.e.,
ret/ 0 (8). Finally, because (G�1)00 is defined for a specific
configuration of fluorophores, the measured anisotropy from
a real sample is related to the ensemble average h(G�1)00i.
Equation 9 then simplifies to

rp ¼ rmt
�1
D�

G�1
�
00

E
: (10)

To calculate the limits of energy migration from the initial
site 0 of excitation, we simulated a seven-subunit-long poly-
mer fully labeled on its positive sites (‘j ¼1 for 0 % j % 6)
(Fig. 2 A, blue circles). By symmetry, these results apply to
negative sites as well. The ensemble average fractional
quantum yields for sites jkj ¼ 4 and 6 on a fully labeled
polymer are substantially higher than their corresponding
values for direct (pairwise) FRET from the donor (Fig. 2
A, red diamonds). This indicates that energy migration
(transfer via intermediary sites) to these sites can be
a more efficient means of energy transfer than direct trans-
fer. Nonetheless, energy migration was found to be highly
local, with the ensemble average fractional quantum yield
exceeding 1% only for sites jkj ¼ 2 and 4. This acute local-
ization of energy migration implies the anisotropy will be
insensitive to the total length of the actin filament—typi-
cally hundreds of subunits or more (18,19).

Actin-GFP competes with endogenous g-actin to incorpo-
rate into actin filaments and so its incorporation probability
will depend on its expression level. The probability that an
actin-GFP is found at a filament site j (or the labeling
density, ‘) is

P
�
‘j ¼ 1

� ¼ ‘

¼ KacGFP½actin� GFP�
KacGFP½actin� GFP� þ ½endogenous g-actin�;

(11)

where KacGFP is the relative rate of incorporation of actin-
GFP versus endogenous g-actin. We used a Monte Carlo
simulation to average over all labeling configurations for
a given labeling density (see Section S4 in the Supporting
Material) to find the dependence of t�1h(G�1)00i and
thereby the polymer anisotropy (Eq. 10), on the labeling
density. Because energy transfer from the initially excited
site 0 is largely restricted to the jkj ¼ 2 and 4 sites even
for a fully labeled polymer, we included only sites
0, 52, and 54 in the simulation. We find that the depen-
dence of t�1h(G�1)00i on the labeling density (Fig. 2 B)
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can be well fit by a straight line with a slope m‘ ¼ 0.251 5
0.003:

t�1
D�

G�1
�
00

E
¼ 1� m‘‘: (12)

We have fixed the intercept in the fit to be 1 because, for
a negligible labeling density ð‘/0Þ, energy cannot transfer
off site 0 and hence the fractional quantum yield of site
0 approaches the total quantum yield (F0 / Ftotal) and,
therefore, by Eq. 8: t�1h(G�1)00i / 1.

Anisotropy of a mixture of monomer and polymer

For a fluorophore that exists as a mixture of monomeric and
polymeric populations, the average anisotropy is simply the
sum of the anisotropies of the monomer and the polymer
weighted by their fractional concentrations:

r ¼ Cm

Cm þ CpC
rmr þ CpC

Cm þ CpC
rpr : (13)

Here Cm,pCC and rm,pr are the concentrations and anisotropies
of the monomer and polymer, respectively. Substituting
the expressions for polymer anisotropy (Eq. 10) and
t�1h(G�1)00i (Eq. 12) into Eq. 13 and solving for the poly-
mer concentration, CpC , gives the final expression for the
anisotropy of a monomer/polymer mixture,

CpC ¼
�

1

1� t�1
	ðG�1Þ00


� �1� r

rm

�
CT

¼ 1

m‘‘

�
1� r

rm

�
CT ; (14)

where CT ¼ CmC þCpC is the total actin-GFP concentration.
Although t�1h(G�1)00i or m‘ can be explicitly calculated
as we have shown above, for most experimental purposes
it is enough to note from Eqs. 1–4, 7, and 11 that
t�1h(G�1)00i is solely determined by three sets of
parameters:

1. Fluorophore parameters: R0, rmrr , jC.j, and jL.j.
2. F-actin structure parameters: Axy, Az, q, and filament

length (M þ N þ 1).
3. Expression level: ‘.

Because every term of G contains t�1, the explicit depen-
dence of t�1h(G�1)00i on lifetime cancels out, leaving only
an implicit dependence through the quantum efficiency
term in R0. Our analysis above indicates that t�1h(G�1)00i
is minimally affected by the filament length. The other flu-
orophore parameters are constants for a given fluorescent
fusion protein whereas the other f-actin structure parame-
ters are generally constant. Finally, keeping actin-GFP
expression roughly constant during an experiment is
straightforward.

If its constituent parameters are constant, then
t�1h(G�1)00i is a constant and Eq. 14 can be rewritten as
a proportionality:

CpC f

�
1� r

rm

�
CT : (15)

Equation 15 relates the actin polymer concentration to
the anisotropy under the constraint of constant expression
level.

Imaging the anisotropy-derived actin
polymerization state

Steady-state anisotropy in fixed and living HEK293 cells

Cultured HEK293 cells expressing actin-GFP (Fig. 3 A)
were imaged either alive or after fixation. The actin-GFP
anisotropy shows a region-specific variation (Fig. 3 B). In
much of the central soma, the anisotropy is ~0.41 in both
live and fixed cells (Fig. 3 D). Actively growing peripheral
regions such as lamella/lamellipodia and filopodia exhibit
a significantly reduced anisotropy. In comparison, the fluo-
rescence anisotropy in cells expressing only GFP is spatially

FIGURE 3 Total fluorescence intensity (A(( ), anisotropy (B) of actin-GFP,

and f-actin staining with Texas Red-X phalloidin (C) in a fixed HEK293

cell. (D) Anisotropy in both live (red) and fixed (blue) cells is spatially

heterogeneous with significant decreases in regions known to be f-actin-

rich. Scale bar ¼ 10 mm.
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homogenous, with an average value of 0.413 5 0.023 (n ¼
23), comparable to previously published results (20).

The anisotropy of somatic actin-GFP is comparable to
that of GFP alone, indicating no interaction between actin-
GFPs and implying that somatic actin-GFP is monomeric.
The cell periphery, on the other hand, exhibits significantly
reduced anisotropy, as would be expected from actin-GFP
that had incorporated into f-actin and was undergoing
emFRET. The slightly lower anisotropy in the periphery
of live cells compared to fixed cells is possibly due to
destabilization of f-actin during fixation. These results are
consistent with phalloidin stains (Fig. 3 C), which reveal
f-actin to be low in the soma but enriched in the growing
periphery.

Validation of the theoretical model in cells

Comparing the theoretical and experimental dependence
of anisotropy on polymer fraction and expression level

Our theoretical model (Eq. 14) predicts a relationship
between actin-GFP anisotropy and polymer fraction with
a proportionality term that depends on the expression level.
Although the expression level can be treated as a constant
for a single cell during most experiments, it will vary
from cell to cell. Validating Eq. 14 therefore requires empir-
ically checking the relationship between anisotropy and
polymer fraction for a range of expression levels.

We take the actin-GFP expression level to be proportional
to the mean actin-GFP fluorescence of the extranuclear
soma, i.e., FsomaF ¼ a[actin � GFP], where a is a constant
for a given set of imaging parameters. Combining this
with Eqs. 11 and 14, we get

r ¼ rm

�
1� m‘

�
CpC

CT

�
zFsoma

zFsoma þ 1

�
; (16)

where z ¼ KacGFPKK /(a[endogenous g-actin]) is assumed
a constant. Equation 16 is simply a restatement of our model
that can be more conveniently tested in cells. We measured
the anisotropy from two types of intracellular regions in
fixed HEK293 cells: lamella/lamellipodia (which are typi-
cally f-actin-rich), and actin-hotspot-free regions of the
soma (which are typically f-actin-poor). In selecting regions
from lamellipodia, care was taken to avoid filopodia and mi-
crospikes, as these structures contain compact bundles of
f-actin that may exhibit interfilament FRET (see Discus-
sion). For each region of interest, lamellipodium or soma,
we recorded the anisotropy, r, and the mean fluorescence
from the extranuclear soma of the parent cell as the
corresponding measure of expression level FsomaF . These
measurements were made in a large number of cells
(Lamellipodia: 138 regions of interest (ROIs) from 75 cells;
Somas: 103 ROIs from 103 cells) spanning two orders of
magnitude in expression level. The resulting plot of anisot-
ropy versus expression level is shown in Fig. 4 A (data

points). Each data point represents a binning (mean 5
SD) of five ROIs of comparable FsomaF values. We fit this
cellular data with Eq. 16 (Fig. 4 A, dashed lines) using rmr ,
CpC /CT,TT and z as fitting parameters and setting m‘ ¼ 0.251,
as discussed above.

The model fits the experimental data well over a large
range of expression levels. Furthermore, the fit yields a poly-
mer fraction (CpC /CT)TT of 0.77 in lamellipodia and 0.15 in
somas (Fig. 4 B), consistent with the fact that they are
f-actin-rich and -poor, respectively. Our value for the poly-
mer fraction in HEK cell lamellipodia is remarkably close to
that obtained by Koestler et al. (21) (CpC /CT ¼ 0.76) in the
lamellipodia of mouse melanoma cells using a very different
experimental approach. Because the soma is very low in
polymeric actin, there are few polymers for actin-GFP
to incorporate into and hence expression level has little
effect on anisotropy (Fig. 4 A, red diamonds). Conversely,
lamellipodia are rich in polymeric actin that incorporates
actin-GFPs and hence increasing the expression level can
significantly affect the incorporation probability, energy
migration, and therefore anisotropy (Fig. 4 B, blue circles).
At low expression levels, actin-GFPs are unlikely to interact
even if incorporated into a polymer, and hence the anisot-
ropies from lamellipodia and somas should converge to
the same value at zero expression—the anisotropy of the
actin-GFP monomer. The estimates of the monomer anisot-
ropy (Fig. 4 B) from lamellipodia and soma curves, 0.445
and 0.448, are indeed very close. We take the average value
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FIGURE 4 Validation of the theoretical model (part 1). (A(( ) The depen-

dence of anisotropy on expression level is well fit (dashed lines) by our
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somas (soma). Each data point represents a binning (mean 5 SD) of

5 ROIs of comparable FsomaF values. The best-fit values for the fit parameters

are summarized in panel B.
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from these two fits to be the actin-GFP monomer anisotropy
rmr : 0.447.

The anisotropy-derived polymer concentration reproduces
the phalloidin staining pattern and drug response

Having measured the actin-GFP monomer anisotropy (rmr ),
we can now use Eq. 15 to calculate, pixel-by-pixel, an image
that is proportional to the actin polymer concentration.
Furthermore, because the total actin-GFP concentration CT

is proportional to the total fluorescence intensity (FT), weTT

can rewrite Eq. 15 as

CpC ðx; y; zÞf
�
1� rðx; y; zÞ

rm

�
FTðx; y; zÞ: (17)

As an independent measure of the f-actin distribution, actin-
GFP-expressing HEK293 cells were fixed and stained with
Texas Red-X phalloidin. The anisotropy-derived actin poly-
mer distribution could then be directly compared to the
phalloidin distribution. Fig. 5 shows the calculated total
fluorescence intensity, anisotropy-derived actin polymer
distribution, and phalloidin stain. The anisotropy-derived
polymer distribution and the phalloidin signal (Fig. 5, B
and C) are highly similar, yielding very high correlation
(0.89 5 0.03, n ¼ 16) and overlap coefficients (0.92 5
0.03, n ¼ 16). The anisotropy-derived polymer concentra-
tion is therefore a good indicator of the f-actin distribution.
Furthermore, the near unity of its linear correlation coeffi-

cient with the phalloidin stain further validates the use of
Eq. 15 and our treatment of t�1h(G�1)00i as a constant for
a given expression level.

To facilitate visualization, we display the anisotropy-
derived polymer concentration in green and the total fluores-
cence intensity in red (Fig. 5 D). It follows that a purely red
pixel contains only g-actin. Pixels that are increasingly
green have proportionally higher concentrations of f-actin.

To ensure that the anisotropy-derived polymer concentra-
tion responds correctly to drug-induced perturbations of the
f-actin level, actin-GFP-expressing HEK293 cells were
treated with the actin-destabilizing drug Latrunculin A
(15 min, 1 mM) and then fixed and stained with Texas
Red-X phalloidin. The anisotropy-derived polymer fraction
and the phalloidin signal were then measured in single z
planes near the base of the cell and found to be comparably
lower in treated cells (Fig. 5 E) compared to control cells.
Hence, the anisotropy-derived polymer concentration indi-
cates changes in f-actin that are similar to those calculated
from the gold-standard phalloidin stain.

Live imaging of the actin-polymerization state

Because our method is based on two-photon excitation, it
can readily be extended to living cells and tissue. We
demonstrate here imaging of the anisotropy-derived actin
polymerization state in live cell cultures, acute hippocampal
slices from mouse, and intact Drosophila larvae. To the best
of our knowledge, these are the first direct images of the
actin polymerization state acquired in acute hippocampal
slices and in live animals. We utilize the red-green mono-
mer-polymer display described above.

Cultured cells

In live HEK293 cells (Fig. 6 and Movie S1 in the Supporting
Material), as in fixed cells, the soma appears mostly red,
indicating monomeric g-actin. Lamellipodia and filopodia
(Fig. 6, B and C) have higher green intensities, indicating
larger polymeric f-actin concentrations. In lamellipodia,
the actin polymerization state depends on whether the
lamellipodium is extending or retracting—as defined by
the position of the leading edge with respect to a fixed point
near the base (Fig. 6 D, green line). During extension, the
polymer fraction and the total actin concentration (CT)TT
remain roughly constant (Fig. 6 D) throughout the lamelli-
podium, with a somewhat higher polymer fraction near
the leading edge. During this phase, it is common to
see filopodia or microspikes that develop into filopodia
(Fig. 6 B, blue arrows). During retraction, the leading
edge exhibits a decrease in the polymer fraction (Fig. 6 D,
blue line) but an apparent increase in the total actin concen-
tration (Fig. 6 D, red line).

The drop in the polymer fraction at the leading edge
during retraction indicates an expected destabilization of
the actin cytoskeleton. In contrast, the accompanying

FIGURE 5 Validation of the theoretical model (part 2). Total fluores-

cence intensity (A(( ) and the anisotropy-derived polymer concentration

(B) of actin-GFP. Scale bar ¼ 10 mm. The derived polymer concentration

(B) shows a high similarity to the Texas Red-X phalloidin stain (C). Panels

A and B can be combined in a red-green image (D) to visualize the mono-

mer-polymer continuum. (E) Latrunculin A induces a comparable decrease

in both the anisotropy-derived polymer concentration and the phalloidin

signal (mean 5 SD).
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increase in the total actin signal is surprising and could be
a volumetric effect due to thickening of the lamellipodium
edge as it peels back from the substrate. Corrections for
volume changes are often necessary in fluorescence micros-
copy and are typically implemented by normalizing inten-
sity changes to those of a whole cell marker. Fluorescence
anisotropy and the calculated actin polymer fraction, being
inherently ratios, are immune to volumetric artifact and
therefore accurately represent changes in the actin polymer
fraction.

Acute hippocampal slices

We virally transduced actin-GFP in the hippocampi of adult
mice and prepared acute hippocampal slices from these
mice after 2–3 weeks of expression. The slices were
perfused with oxygenated artificial cerebro-spinal fluid
and imaged while living. We calculated images of the
anisotropy-derived polymer fraction for multiple cell types
(Fig. 7, A and B), including granule neurons in the dentate
gyrus, and inhibitory interneurons in the CA1 layer. Both
these cell types showed relatively high polymer fractions
in the soma and larger neurites. Smaller, more distal neu-
rites, however, tended to have a lower polymer fraction,

punctuated by more highly polymerized compartments
and terminals (Fig. 7, A and B, blue boxes).

Intact Drosophila larvae

We also calculated images of the anisotropy-derived poly-
mer fraction in live, intact Drosophila larvae expressing
actin-GFP in peripheral sensory neurons (22,23).
Drosophila dendritic arborization sensory neurons (Fig. 7,
C and D) show relatively low polymer fractions in their
somas and primary dendrites. The filamentous projections
from these dendrites, known as dendritic filopodia (blue
arrows), are highly enriched in f-actin. Dendritic filopodia
are believed to be the precursors of new dendrites and
are common in young larvae with developing dendritic
arbors (22).

In highly scattering tissue such as brain, we were practi-
cally limited to imaging at depths of <70 mm. Light scat-
tering destroys fluorescence polarization and therefore
reduces the dynamic range of anisotropy measurements.
Because red light scatters less in tissue, we are developing

A

B C

D

FIGURE 6 Imaging the actin polymerization state in live cells (A(( ; select

frames from Movie S1 in the Supporting Material). Scale bar ¼ 10 mm.

Saturated pixels (bright red) could not be used to calculate a polymer

concentration and hence, have an associated green value of zero. Actin

dynamics in live lamellipodia (B and C) show a high f-actin concentration

near the leading edge. Actin microspikes (B, blue arrow) can be seen that

develop into filopodia. The polymer fraction near the lamellar leading

edge (D, blue line) is constant during extension (left of dashed line) but

declines during retraction. The leading-edge total actin concentration (D,

red line) undergoes an apparent increase during retraction. The extension

and retraction phases are defined by the position of the leading edge (D,

green line) with respect to a fixed point near the base.

FIGURE 7 Imaging the anisotropy-derived actin polymerization state

in vivo. (A(( and B) Live acute hippocampal slices expressing virally trans-

duced actin-GFP. Maximal z projections of a granule neuron (A(( ) in the den-

tate gyrus, and interneuron (B) in the stratum oriens of the CA1 layer. (Blue

highlighted boxes) Single z planes. (C and D) Peripheral sensory neurons in

live, intact, unanesthetized Drosophila larvae expressing actin-GFP selec-

tively in peripheral sensory neurons. (Blue arrows) Examples of dendritic

filopodia. Images are average z projections. Scale bars ¼ 10 mm.
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emFRET-optimized actin fusion proteins with red emissions
to facilitate emFRET imaging in tissue.

DISCUSSION

Interfilament FRET in compact f-actin bundles

Actin filaments can be organized into branched networks
and bundles (for review, see Revenu et al. (24)). In networks
and the bundles mediated by many f-actin bundling proteins,
the interfilament distance (axis-to-axis) is substantially
larger than a typical Förster radius. For example, a-actinin
bundles f-actin with an interfilament distance of 391 Å
(25). In contrast, f-actin bundled by the smallest bundling
proteins, fascin and fimbrin, has an interfilament distance
as short as 120 Å (26,27). This corresponds to a ~50 Å
distance of closest approach for the actin N-termini on
adjacent filaments—well within FRET range. It is therefore
likely that interfilament FRET in these compact bundles
is comparable to, or greater than, intrafilament FRET.
Fascin/fimbrin-mediated compact bundles are typically
found in thin membrane protrusions such as filopodia,
stereocilia, and microvilli.

Because the model presented here considers intrafilament
FRET to be the sole source of depolarization, any additional
depolarization due to interfilament FRET would lead to an
overestimate of the true polymer concentration. This source
of error is not immediately apparent in our correlations
between phalloidin staining and the anisotropy-derived
polymer concentration because filopodia represent a very
small fraction of the total number of pixels in HEK cells.
Nonetheless, an accurate calculation of the f-actin concen-
tration in compact bundle-rich regions such as filopodia
requires the development of additional theory that accounts
for interfilament FRET.

The advantages of emFRET over heteroFRET

Although interactions between like proteins can be probed
with either heteroFRET or emFRET, there are several
advantages to using emFRET.

Incorporation probability affects the rate of energy transfer

In heteroFRET, actin-CFP and actin-YFP compete with
each other for incorporation into f-actin. As a result, two
potentially interacting sites can be occupied by two donors,
or two acceptors, precluding FRET and reducing the
ensemble average FRET rate. In emFRET, every incorpo-
rated fluorophore is both a donor and an acceptor; as a result,
there are no pairs that are incapable of FRET.

The comparison becomes more realistic if we impose the
constraint that the total amount of expressed actin fusion
protein must be the same in both cases. Under such
a constraint, a heteroFRETexperimentmust split the total ex-
pressed fusion protein concentration between the donor and

the acceptor, effectively reducing the concentrations of
both. The net effect of splitting the expressed concentration
and the formation of FRET incompetent pairs is that the
average FRET rate in emFRET is potentially fourfold larger
than in heteroFRET (see Section S6 in the Supporting Mate-
rial). As a result, emFRET can potentially generate the same
rate of energy transfer as heteroFRETwith fourfold less total
fusion protein expression. This is of great importance given
that overexpression of actin can affect cell physiology (28).

Donor/acceptor stoichiometry

Optimizing heteroFRET typically involves expressing the
donor and acceptor in a specific stoichiometry. Although
an obligate donor/acceptor stoichiometry is possible with
specialized constructs, it generally requires optimization
of transfection conditions and displays inevitable cell-to-
cell variability. This is a tractable problem in cell culture
but becomes increasingly difficult in tissue. In emFRET,
because every GFP is both a donor and an acceptor, the stoi-
chiometry problem is completely avoided.

Single fluorophore imaging

Using two fluorophores requires corrections for nonselec-
tive excitation and emission bleedthrough between the two
detection channels (29). Anisotropy imaging utilizes only
one fluorophore and hence avoids these problems altogether.
Imaging with high numerical aperture objectives does cause
polarization mixing; however, the correction for this is
straightforward (30,31).

Indirect probes of actin polymerization state

EmFRET carries the limitations common to overexpressing
any actin fusion protein. Overexpression can alter cellular
actin dynamics, while the presence of a GFP tag can affect
native interactions (32). As an alternative to direct probes,
a number of live cell indirect probes have been developed
(33–36) based on the fluorescent labeling of f-actin binding
proteins and short peptides. Although these techniques are
promising and increasingly used, they all involve utilizing
probes that compete with endogenous f-actin binding
proteins, making them sensitive to the f-actin protein binding
state. Their dynamicsmust therefore be interpretedwith some
care, as their limitations remain to be fully understood (37).
Furthermore, as with imaging the actin-GFP total intensity,
the unbound pool of probe represents a background signal
that limits the dynamic range of f-actin detection. It would
be an intriguing possibility to extend anisotropy imaging to
probes like Lifeact-GFP in cells and even live transgenic
animals (34) to enhance their ability to detect f-actin.

CONCLUSION

The actin polymerization state has drawn intense study
for its role in a diverse set of important cellular processes
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ranging from cell division and migration to learning and
memory. But the lack of a simple, in vivo method for
directly imaging the actin polymerization state has been
limiting. For example, in the brain, although the actin poly-
merization state undoubtedly plays a key role in learning
(long-term potentiation), there are indications that both
polymerization and depolymerization are necessary for
long-term potentiation (5,38,39). Do these opposing poly-
merization dynamics arise from differing experimental
conditions such as the system used (intact brain versus
cultured neurons) or compartments studied (dendritic spine
versus dendritic field)? Or, alternatively, does actin poly-
merization during synaptic plasticity have genuinely com-
plex spatiotemporal dynamics? We seek to explore these
questions by developing a simple, direct, in vivo probe of
the actin polymerization state.

Finally, we note that although our method has been devel-
oped for quantitatively imaging the polymerization state of
actin, it could potentially be readily extended to any poly-
mer (microtubules, intermediate filaments, amyloids, etc.).

SUPPORTING MATERIAL

Supporting sections, two tables, five figures, one movie, and references
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Crosstalk and Competition in Signaling Networks

Michael A. Rowland,† Walter Fontana,§ and Eric J. Deeds†‡*
†Center for Bioinformatics and ‡Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas; and §Department of Systems
Biology, Harvard Medical School, Boston, Massachusetts

ABSTRACT Signaling networks have evolved to transduce external and internal information into critical cellular decisions such
as growth, differentiation, and apoptosis. These networks form highly interconnected systems within cells due to network cross-
talk, where an enzyme from one canonical pathway acts on targets from other pathways. It is currently unclear what types of
effects these interconnections can have on the response of networks to incoming signals. In this work, we employ mathematical
models to characterize the influence that multiple substrates have on one another. These models build off of the atomistic motif
of a kinase/phosphatase pair acting on a single substrate. We find that the ultrasensitive, switch-like response these motifs can
exhibit becomes transitive: if one substrate saturates the enzymes and responds ultrasensitively, then all substrates will do so
regardless of their degree of saturation. We also demonstrate that the phosphatases themselves can induce crosstalk even
when the kinases are independent. These findings have strong implications for how we understand and classify crosstalk, as
well as for the rational development of kinase inhibitors aimed at pharmaceutically modulating network behavior.

INTRODUCTION

Signal propagation through a network of interacting proteins
is central to a cell’s ability to process and respond to
stimuli. In most cases, these interactions involve an enzyme
(e.g., a kinase) that covalently modifies a substrate and
changes its functionality (i.e., activates/deactivates it as
an enzyme, or causes translocation to a different compart-
ment). To regulate the signal, another enzyme (e.g., a phos-
phatase) reverses the modification, restoring the original
functionality of the substrate in question. The net activity
of these enzymes alters the functional state of the proteins
in the network in response to inputs, and the overall state
of the network ultimately determines the cellular response.

Intracellular signaling networks are extremely complex
in metazoans, which makes it difficult to understand their
behavior (1,2). A major source of this complexity is network
crosstalk, i.e., the sharing of input signals between multiple
canonical pathways (3–7). For example, kinases can often
transmit signals to a large number of different targets: Akt
can act on at least 18 substrates, and the receptor tyrosine
kinases in the EGF/ErbB family can interact with >20
substrates (8,9). Because eukaryotic genomes contain fewer
distinct phosphatases than distinct kinases, phosphatases
are generally considered more promiscuous, and even with
adaptor proteins targeting their activity, they often act on
multiple substrates (10). Although it is clear that crosstalk
is widespread in mammalian signaling networks, we
currently do not have a clear conceptual picture of how
this highly interconnected architecture might influence the
response of a network to incoming signals.

In this work, we seek to understand how the competition
and promiscuity induced by crosstalk ultimately influence

network behavior. In classic crosstalk, a kinase is shared
between two pathways and can transfer signals from one
pathway to another (3,5,7,11); for instance, mitogen-acti-
vated protein kinase (MAPK) networks often use the same
enzymes in multiple cascades (12). Most previous computa-
tional studies on this subject have focused on characterizing
the spatial or temporal mechanisms for the insulation of
MAPK signaling cascades despite the potential for crosstalk
(13–15). It has been demonstrated, however, that com-
petition among targets of the same kinase can have profound
effects on substrate phosphorylation (16). Here, we extend
these previous findings to characterize in detail how cross-
talk can actively couple the response of multiple proteins
to incoming signals. We developed models that consider a
set of general motifs, with the goal of understanding how
features such as substrate saturation and phosphatase archi-
tecture can influence substrate response.

Our models build off a simple futile cycle in which one en-
zyme modifies a single substrate and another enzyme re-
moves the modification, which we represent as a kinase
and phosphatase pair interacting with a target protein (see
Fig. 1 A). As first shown by Goldbeter and Koshland (18)
over 30 years ago, the fraction of modified substrate for
this cycle can be expressed as a function of three parameters:

KK ¼ Km;K

½S�0
; KP ¼ Km;P

½S�0
; r ¼ Vmax;K

Vmax;P

(1)

where [S]0 is the total amount of substrate, Km,K and Km,P are
the Michaelis constants for the two enzymes, KK and KP

represent the inverse of the degree of saturation of the
enzymes, and r is the ratio of their maximum velocities.
Detailed definitions of these constants in terms of the under-
lying rates of the enzymatic reactions can be found in the
context of Eq. 2 below. One can easily solve the underlying
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system of differential equations (see Fig. 1 A) at steady state,
providing a relationship between overall substrate phos-
phorylation and the parameters listed in Eq. 1 (see Eq. 3
below, with aK,1 ¼ aP,1PP ¼ 1). Because protein levels tend
to change slowly (17), we expect that saturation (and thus
KKK and KPK ) will remain constant on short timescales during
the response to signal. On the other hand, r changes with the
concentration of active kinase and phosphatase. Incoming
signals generally modulate active K or P concentration,
thus making r the dominant response parameter. When the
substrate does not saturate the enzymes, phosphorylation
of the substrate increases hyperbolically with r. However,rr
when the substrate saturates both enzymes, the loop displays
a switch-like behavior in r, referred to as 0th order ultrasen-
sitivity (Fig. 1 B). In this case, at values of r< 1 the fraction
of phosphorylated substrate is very low, and at r > 1 the
system switches to a highly phosphorylated state (18). The
ultrasensitive response of a substrate at saturating concen-
trations has been observed experimentally in a number of
systems (16,19–23).

We expanded this model to include competing substrates
at either or both enzymes to characterize the influence of
multiple targets on signaling (Fig. 2, A–C). All three of
the motifs we consider are found in well-known signaling
systems, such as the Fus3/Cdk1 network in yeast and other

eukaryotes (Fig. 2 D). We found that shared signaling
enzymes can couple the responses of different substrates.
For instance, when there is more than one substrate of the
same kinase and phosphatase (see Fig. 2 A), if one substrate
is at sufficient concentration to elicit an ultrasensitive
response, then all substrates that share the pair enzymes in
the cycle will exhibit ultrasensitivity without necessarily
saturating the enzyme themselves. We have shown that in
systems in which two substrates share a phosphatase (see
Fig. 2 C), one substrate saturating the phosphatase can cause
the other substrate to ultrasensitively respond to signals
from the first kinase. This indicates a novel potential for
phosphatases to be involved in network crosstalk.

Kinases are becoming increasingly popular drug targets
in the treatment of cancer and other diseases (24). We
considered how such inhibitors might influence the behavior
of these various crosstalk architectures, and found that these
inhibitors can have important consequences that would be
difficult to predict in the absence of a detailed understanding
of network topology and enzyme saturation.

Overall, our work demonstrates that enzymes with mul-
tiple targets can couple signal responses, and that systems
considered in a cellular context may exhibit behaviors vastly
different from those considered in isolated models. These
results have implications for how we understand the role

FIGURE 1 The Goldbeter-Koshland loop. (A(( ) A pair of enzymes (say,

a kinase K and a phosphatase P) acts on a single substrate. The associated

equations show the change in S* concentration as the difference between

the production of S* by the kinase (in red) and the production of S by the

phosphatase (in blue). Here we assume that the concentration of free S

and S* is far greater than the concentrations of bound S in either form,

which is necessary to obtain the standard Michaelis-Menten forms for the

enzymatic reaction velocities (18). (B) The fraction of phosphorylated S

(z axis) is a function of r and [S]0. The total concentration of [S] is normal-

ized by its KmKK (which is identical for both the kinase and phosphatase) and

is plotted on a log scale.

FIGURE 2 Crosstalk schematic. (A(( ) A pair of enzymes (a kinase K and

phosphatase P) acting on N substrates; we term this the 1K1P loop. (B)

A kinase that has two substrates, each with its own independent phospha-

tase (P1 and P2); we term this the 1K2P loop. (C) Two independent kinases

(K1 and K2KK ) acting on two substrates that share a single phosphatase P; we

term this the 2K1P loop. (D) A section of the yeast Cdk1 signaling network,

including each of these three motifs (16,44–49). Although the interactions

shown are specific to yeast, there are human homologs for each of the

proteins listed. The full network in this case contains a number of down-

stream feedback mechanisms that are omitted for clarity. These mecha-

nisms may be abrogated by mutations so that the local influence of

competition can be studied experimentally (16). The competition between

Wee1 and Cdc6 is an example of the 1K1P loop, whereas Wee1 and Fin1

form a 1K2P loop, and Fin1 and Bni1 form a 2K1P loop.

Biophysical Journal 103(11) 2389–2398

2390 Rowland et al.



of crosstalk in signaling, and how we can potentially control
the propagation of the effects of enzymatic inhibitors
through highly connected networks.

MATERIALS AND METHODS

The behaviors of each model are described by sets of ordinary differential

equations (ODEs), which are written explicitly for each system in section 1

of the Supporting Material. The systems of ODEs were numerically inte-

grated using the CVODE package from SUNDIALS (25). We employed

the dense linear solver with the backward differentiation formula and

a Newton iteration methodology available in that package for all of the

dynamics discussed in this work. The values of the parameters used in

each case are included in the Supporting Material.

Steady-state measurements were obtained by allowing the system to run

until the level of each species of the system stabilized. The actual times at

which the measurements were made were chosen heuristically by visual

inspection of the trajectories themselves. The surfaces obtained in Figs. 3

and 4 were confirmed analytically by solving for S1* in the same manner

as described by Goldbeter and Koshland (18). The analytical results are

derived in sections 2–4 of the Supporting Material.

RESULTS

1-Kinase/1-phosphatase loop with two substrates

We first considered a signaling motif in which a kinase (K)
and phosphatase (P) act on multiple substrates, which we
term the 1-kinase/1-phosphatase (1K1P) loop. An example
of this can be found in yeast, where the proteins Wee1
and Cdc6 compete for both the kinase Cdk1 and phospha-
tase PP2A (Fig. 2 D). In the simplest case, we included
two substrates of the kinase and phosphatase, S1 and S2,
each of which can exist in an unphosphorylated and phos-
phorylated (e.g., S1*) form (see Fig. 2 A, N ¼ 2). The set
of enzymatic reactions is as follows:

S1 þ K#
kþ;K;1

k�;K;1

KS1.
kcat;K;1

S�1 þ K

S2 þ K#
kþ;K;2

k�;K;2

KS2.
kcat;K;2

S�2 þ K

S�1 þ P#
kþ;P;1

k�;P;1

PS�1.
kcat;P;1

S1 þ P

S�2 þ P#
kþ;P;2

k�;P;2

PS�2.
kcat;P;1

S2 þ P

(2)

Each of the above reactions involves three elementary rates:
the rate of complex formation (kþ), the rate of complex
dissociation (k�), and the enzyme catalytic rate (kcat).
From these rates we can obtain the Michaelis constant for

both enzymes: Km,K,i ¼ (k-,K,i þkcat,K,i)/kþ,K,i and Km,P,i ¼
(k-,P,i þkcat,P,i)/kþ,P,i.. Additionally, we can define the maxi-
mum velocity of each enzymatic reaction as Vmax,K,i ¼ [K]0
kcat,K,i and Vmax,P,i ¼ [P]0 kcat,P,i. Each kinase and phospha-
tase molecule can only bind and act on one substrate at any
given moment, and as such, S2 acts as a competitive inhib-
itor of the kinase and phosphatase reactions with S1. This
results in a set of inhibitory constants, aK,1 ¼ 1 þ [S2]/
Km,K,2 and aP,1 ¼ 1 þ [S2*]/Km,P,2, that capture the effects
of S2 on the S1 kinase and phosphatase reactions, respec-
tively. S1 inhibition of the S2 reactions generates similar
constants, aK,2 and aP,2 (see the Supporting Material). The
fact that multiple targets constitute competitive inhibitors
of each other has been observed experimentally for both
kinases and phosphatases (16,26,27). These a terms are
identical to what one would obtain for a generic competitive
inhibitor, a¼ 1þ [I]/KI (28). Where the activity of a generic
inhibitor against its target enzyme depends solely on its
concentration, a competitive substrate will inhibit either
the kinase or the phosphatase based on the concentrations
of its unphosphorylated and phosphorylated forms, respec-
tively. Because these concentrations are controlled by
incoming signals, mutual inhibition has the potential to
couple substrate responses.

The chemical reactions in Eq. 2 can be readily used to
define a system of ODEs in which the binding, dissociation,
and catalysis steps are treated explicitly (see the Supporting
Material). We numerically integrated these equations and
calculated the fraction S1* h [S1*]/[S1]0 at steady state at
various concentrations of S2 for a case in which S1 does
not saturate the enzymes. In this work, we consider a case
in which the saturation of all enzymes by any given
substrate is equal; we leave the case of differential satura-
tion among enzymes (12) to future studies. The response
of the system is controlled by two r values, r1 and r2, which
are the ratios of the maximum velocities of the enzymes
with respect to either substrate. The results of these calcula-
tions are summarized in Fig. 3 A. As expected, when there is
no S2 present to compete with S1 for the enzymes, S1*
increases as a rectangular hyperbola in r1. When S2 saturates
the enzymes, however, we find that S1 displays an ultrasen-
sitive response in r1 in a fashion similar to the ultrasensitive
response obtained by increasing S1 concentration in Fig. 1 B.

These findings can be understood by treating the 1K1P
loop analytically. In the limit in which the total concentra-
tion of the substrates is much larger than the total concentra-
tion of either enzyme (i.e., [Si]0 z [Si] þ [S1*]), we can
calculate the fraction S1* as

S�1 ¼
ðr1 � 1Þ � ðaK;1KK;1 þ aP;1r1KP;1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððr1 � 1Þ � ðaK;1KK;1 þ r1aP;1KP;1ÞÞ2þ4ðr1 � 1Þr1aP;1KP;1

q
2ðr1 � 1Þ (3)
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which is identical to the original result of Goldbeter
and Koshland (18) except for the a inhibition terms (see
the Supporting Material for details about the solution).
Note that S1* depends on [S1]0 through the K terms as
well as [S2] and [S2*] through the a terms. The equation
for S2* is identical to Eq. 3 with a change of indices.
This result is a generalization of previous findings on mul-
tiple substrates in a Goldbeter-Koshland loop, allowing
for both kinase saturation and saturation of a shared phos-
phatase (16). When [S1]0 � Km, as in Fig. 3 A, aK,2 z 1
and aP,2 z 1. In this case, S2 will behave as an isolated
Goldbeter-Koshland loop and as such will display an
ultrasensitive response in r2 when [S2]0 [ Km. Because
incoming signals vary r by changing the relative concen-
trations of active enzymes, r1 f r2 (for purposes of display
in Fig. 3 A, we assumed r1 ¼ r2). When r2 < 1, S2 will
be largely unphosphorylated and will inhibit the kinase’s
action on S1, causing S1 to be primarily in its unphos-
phorylated state. Similarly, when r2 > 1, S2 will be mostly
phosphorylated and will inhibit the S1 dephosphorylation
reaction by saturating the phosphatase. In combination,
this coupling transfers the ultrasensitive response of S2
to the S1 curve. We have proven mathematically that an
increase in S2 ultrasensitivity (i.e., increasing S2 concen-
tration) always increases the ultrasensitivity of the re-
sponse of S1 in r2 regardless of the values of the kinetic
parameters (see the Supporting Material). The general
behavior observed in Fig. 3 A is thus a qualitative feature
of all 1K1P loops.

It has been shown experimentally that the competi-
tion between multiple phosphorylation sites on the protein
Wee1 contributes to the ultrasensitivity of Wee1’s response
to incoming signals (16). Although multisite phosphoryla-
tion can have a number of influences on such systems
(e.g., by introducing thresholds or bistability (2,29,30)),
these findings are consistent with the predictions made
by Eq. 3.

1K1P with many substrates

We further developed the 1K1P loop to include N > 2
substrates of the kinase and phosphatase (see Fig. 2 A). As
described above, we numerically integrated the resulting
ODEs and calculated the fraction S1 at steady state in a
case in which we include a varying number of substrates,
each of which does not saturate the enzymes. The results
of these calculations are summarized in Fig. 3 B. As ex-
pected, S1* increases as a rectangular hyperbola in r1 in
the absence of other substrates. As new unsaturating sub-
strates are added to the system, we see that S1* starts to
show an ultrasensitive response in r1, even though none of
the substrates are at a concentration that would produce
such a response on their own.

Once again, these results can be understood by treating the
loop analytically. In this case, the collection of substrates act

as competitive inhibitors of the S1 loop. As such, the inhibi-
tory constants must now account for all competing substrates
and can be expressed as aK;1 ¼ 1þPN

i¼2½Si�=Km;K;i and
aP;1 ¼ 1þPN

i¼2½S�i �=Km;P;i (see the Supporting Material
for the derivation). Considering the case in which N > 2
reveals that saturation of the enzymes can be the combined
result of many substrates, rather than one substrate saturating
the enzymes on its own. When the kinase is saturated by any
subset of its targets, S1’s kinase reaction is inhibited, and
a similar inhibition occurs with the phosphatase. Thus, given
enough substrates, the entire system can show ultrasensitiv-
ity in r1 even when none of the substrates individually satu-
rate the enzymes.

As mentioned in the Introduction, kinases often have
multiple targets within cells; for instance, Cdk1 has
hundreds of substrates in yeast (2,31,32), and the ErbB
receptor tyrosine kinases in humans have between 20
and 40 potential targets. In the latter case, the KD values
measured by Kaushansky et al. (33) indicate that the
1 mM KM value used in generating Fig. 3 is a reasonable
estimate. The collective-saturation mechanism described
above may thus represent a common scenario for generating
ultrasensitivity in substrate response.

1-Kinase/2-phosphatase loop

Most of our empirical understanding of crosstalk comes
from studies that focused on the motif of a kinase with
more than one substrate (34). Because the specific phospha-
tases that act on any given set of targets are often not known,
it is not clear that all kinase crosstalk will follow the 1K1P
pattern discussed above (Fig. 2 A). For instance, Fin1 and
Wee1 share the same kinase (Cdk1) but have separate phos-
phatases (Cdc14 and PP2A, respectively; Fig. 2 D). Also,
because kinases often have a very large number of targets,
systems in which substrates share the same kinase but pos-
sess separate phosphatases may be widespread (8,9,31,32).
As such, we considered the behavior of the 1-kinase/2-phos-
phatase (1K2P) loop as diagramed in Fig. 2 B. In this case,
because the phosphatases are independent, we can separate
the r parameters (i.e., r2 ∝ r1). At low substrate concentra-
tions, S1 responds hyperbolically in r1 and is insensitive to
r2 (Fig. 4 A). When [S2]0 [ Km and r2 < 1, S1 phosphory-
lation is greatly reduced (Fig. 4 B). In fact, one observes
very little S1 phosphorylation until r2 > 1. In contrast to
the 1K1P loop, the response of S1 to r2 thus exhibits
a threshold: when r2 < 1, S1 essentially cannot respond to
signals. At values of r2 > 1, however, S1 responds hyperbol-
ically to both r1 and r2.

The fraction S1* for the 1K2P loop also follows Eq. 3,
but with aP,1 ¼ 1 because the phosphatases are indepen-
dent. The presence of S2 in the system thus generally
decreases the phosphorylation level of S1 (compare
Fig. 4, A and B). The thresholding behavior seen in
Fig. 4 B occurs because the concentration of the inhibitor
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(i.e., unphosphorylated S2) responds ultrasensitively to r2rr .
If r2rr < 1, the inhibitor concentration is high, and no phos-
phorylation of S1 can take place. At r2rr > 1, the inhibitor
is largely removed from the system, allowing S1 to respond
to incoming signals. However, it is only in the limit r2rr /N
(i.e., aK,1 / 1) that S1 will behave as an isolated futile
cycle. As with the 1K1P loop, we have shown mathemati-
cally that addition of S2 always decreases S1* regardless
of the values of the parameters in the limit S1* � KmKK (see
the Supporting Material). This indicates that the gatekeeper
function played by S2 is a robust feature of 1K2P loops.

Kim and Ferrell (16) showed experimentally that adding
Fin1 and Cdc6 to Xenopus cell extracts increases the active
kinase concentration (i.e., r) required to induce a Wee1
response. Although the experiment in this case involves
both a 1K1P and a 1K2P loop (Fig. 2 D), these findings
are consistent with our prediction that competitive sub-
strates tend to decrease the phosphorylation levels of other
targets when the phosphatase is not shared.

2-Kinase/1-phosphatase loop

The human genome encodes ~150 catalytically active phos-
phatases and phosphatase domains, and almost 500 kinases
(35,36). As such, phosphatases are generally considered

FIGURE 4 Influence of phosphatase architecture on network response.

(A(( ) The fraction of phosphorylated S1 as a function of r1 and r2rr when

[S2]0 � KmKK for both the 1K2P and 2K1P loops. In this case, [S1]0 ¼
0.1 � KmKK . Note that r2rr has little effect on the response of the S1 loop. (B)

The fraction of phosphorylated S1 as a function of r1 and r2rr for a 1K2P

loop with [S2]0 ¼ 20 � KmKK . As in A, S1 ¼ 0.1 � KmKK . If S2 saturates the

enzymes, it becomes a gatekeeper; when r2rr < 1 (i.e., when the S2 loop is

switched to the unphosphorylated state), the S1 loop essentially cannot

respond to incoming signals. When r2rr > 1, however, S1* responds hyper-

bolically in both r1 and r2rr . (C) The fraction of phosphorylated S1 as a func-

tion of r1 and r2rr for a 2K1P loop. As in B, [S1]0¼ 0.1�KmKK and [S2]0¼ 20�
KmKK . Saturating concentrations of S2 generally increase phosphorylation in

this case. Note that even when r1 � 1, S1 shows an ultrasensitive response

to r2rr (and thus K2KK ) despite receiving only basal levels of signal from its own

kinase. This indicates the potential for significant phosphatase crosstalk in

signaling networks.

FIGURE 3 Results for the 1K1P loop. (A(( ) The fraction of phosphorylated

S1 (z axis) as a function of r1 and [S2]0. Note that for the purpose of

display, we have set r1 ¼ r2rr in this case. The total concentration of [S2]

is normalized by its KmKK (which is identical for both the kinase and phospha-

tase) and is plotted on a log scale. (B) The fraction of phosphorylated S1
as a function of r1 and the number of additional substrates in the loop

(N, see Fig. 2NN A). All substrates are below saturating concentrations

([Si]0 ¼ 0.1 � KmKK ). As in A, for the purpose of display, the r and KmKK param-

eters have been set to be equal for all substrates. Note that in both panels A

and B, the fraction S1* responds to r1 with increasing ultrasensitivity as the

total saturation of the enzymes (represented by [S2]0/KmKK or N, respectively)NN

increases.
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promiscuous; although adaptor proteins help increase phos-
phatase specificity, these complexes still can target multiple
substrates (10). Because of this promiscuity, it is reasonable
to imagine that motifs in which two substrates share a
single phosphatase but are phosphorylated by independent
kinases are relatively common arrangements in signaling
networks. There are certainly examples of such situations:
for instance, Fin1 and Bni1 in yeast share a phosphatase
(Cdc14) but have different kinases (Cdk1 and Fus3, re-
spectively; Fig. 2 D). We used the 2-kinase/1-phosphatase
(2K1P) loop as modeled in Fig. 2 C to characterize the
behavior of such systems. As with the 1K2P loop, the dis-
tinct kinases in the 2K1P system allow the separation of
r parameters so that r1 ∝∝ r2rr .

At low substrate concentrations, this is essentially the
case. As anticipated, S1 responds hyperbolically in r1 and
is insensitive to r2rr (see Fig. 4 A). The situation is very
different when [S2]0[ KmKK . We see the expected hyperbolic
S1 response in r1 when r2rr is nearly zero (i.e., when the S2
loop has not received an activation signal); however, as r2rr
increases, the fraction of phosphorylated S1 molecules
increases until it reaches nearly one at r2rr > 1 (Fig. 4 C).
When r1 is close to zero, S1 responds ultrasensitively to
r2rr . This indicates that a signal that switches S2 to its phos-
phorylated state can cause a similar switch in S1 even if
very little signal is received via K1.

As with the 1K1P loop, this behavior can be explained in
terms of the inhibition of one loop by another. In this case,
the fraction S1* can be defined as in Eq. 3 with aK,1 ¼1 to
account for the independence of the kinases. Adding S2 to
the system thus generally increases phosphorylation of S1
(compare Fig. 4, A and C). Because phosphorylated S2
acts as a phosphatase inhibitor, an incoming signal that in-
creases r2rr to values greater than one introduces high concen-
trations of the inhibitor in a switch-like manner, inducing
a response in S1. We have shown mathematically that this
increase in phosphorylation in response to S2 competition
will always occur regardless of parameters in the limit
S1* � KmKK (see the Supporting Material).

Phosphatase tunneling

In the models described above, we focused on crosstalk
occurring between substrates on the same level of signaling;
the only relationship between the substrates is the shared en-
zymes. Signaling networks, however, often contain cascades
in which a set of proteins activate each other in sequence
(37). Although the sharing of phosphatases between dif-
ferent levels of a cascade has been documented (6), the
phosphatase architecture in these cases is often poorly
understood. Indeed, anonymous and independent phospha-
tases are often added to mathematical models of MAPK
cascades to fill in these gaps (21,38–40). Given this ambi-
guity, we constructed models of cascades in which each
kinase has an independent phosphatase, in addition to a

case in which a single phosphatase acts on all of the proteins
in the cascade (Fig. 5, A and B).

Each type of cascade was modeled with depth N¼ 2, 3, 4,
or 5 substrates present in saturating (10 � KmKK ) or unsaturat-
ing (0.1 � KmKK ) concentrations. The input parameter r was
defined as the ratio of the maximum velocities of the initial
kinase (K) to the phosphatase acting onKK S1 (P1 or P for the
independent and shared cases, respectively), and the models
were analyzed for the fraction of the final substrate phos-
phorylated (SNS *) at steady state.

For both classes of cascade, we found that the response of
the final substrate becomes exponentially more sensitive to
input signals with increasing cascade depth. The N ¼ 5 case
generally reaches its r1/2 (the r-value at which half of SNS
is phosphorylated) with 9 orders of magnitude less input

FIGURE 5 Influence of phosphatase tunneling on cascade signals. (A(( ) A

kinase cascadewith Nmembers. The kinaseK provides the input signal, and

each substrate Si acts as the kinase for substrate Siþ1. In this model, there are

N independent phosphatases (Pi). This expands upon systems previously

described by Goldbeter and Koshland (18). (B) A kinase cascade similar

to that in panel A, but with a single shared phosphatase P. (C) FractionalPP

phosphorylation of the final substrate in the cascade as a function of r for

cascades with two to five substrates. In this case, r is defined as the VmaxVV

of the input kinase (K in A and B) divided by the VmaxVV of the phosphatase

for the first substrate in the cascade (P1 in A, and P in B). The dashed lines

represent cascades with N phosphatases and the solid lines represent

cascades with a single shared phosphatase. Note that the responses of

cascades become exponentially more sensitive to r with increasing depth

N. Cascades with a single shared phosphatase are considerably more sensi-

tive to r compared with those with independent phosphatases. (D) In this

case, we define a parameter, r1/2, as the value of r in panel C at which the

response of a cascade is half-maximal. For any given number of substrates,

N, theNN r1/2 ratio is the r1/2 of the independent case divided by the r1/2 of the

shared case (i.e., the r1/2 of the dashed curve in C divided by the r1/2 for

the solid curve). For N ¼ 2, the independent case requires ~5 times as

much input signal to achieve a half-maximal response; for N ¼ 3, 4, and

5, the independent case requires ~13 times as much input signal.
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than N ¼ 2 (see Fig. 5 C). This increase in sensitivity is an
expected outcome of amplification in signaling cascades
(18,41). Additionally, models with a single, shared phospha-
tase show a higher degree in input sensitivity in r compared
with models with independent phosphatases, but only when
the substrates are present at saturating concentrations.

To quantify the changes in input sensitivity for saturating
conditions, we took the ratio of the r1/2-values for the two
types of cascade at a given value of N (see Fig. 5 D). In
the most basic cascade, with N ¼ 2, the r1/2 for the single
phosphatase model is ~5 times less than that for the multiple
phosphatase model. This ratio increases and plateaus for
cascades with depth N R 3; in these cases, the single phos-
phatase models require ~13 times less signal. This occurs
because the signal is able to tunnel through the shared phos-
phatase when the substrates are at saturating concentrations.
Activation of the upstream kinases not only activates the rest
of the cascade but also produces phosphorylated substrate
molecules that act as phosphatase inhibitors. This reduces
the effective concentration of free phosphatase available
for downstream substrates, amplifying the apparent signal
strength.

Kinase inhibitors

As mentioned above, there is a growing interest in devel-
oping small molecules that target and inhibit kinases as
potential therapeutics for a variety of diseases (24). It is
unclear, however, what kind of effects these inhibitors will
have in loops with significant kinase or phosphatase cross-
talk; in these cases, kinase inhibitors not only influence their
targets’ activity but also the concentration of other inhibitors
(namely, S2 and S2*) in the system. We considered the
impact of two separate types of inhibitors on the loops
described above. Type 1 inhibitors, which are currently by
far the most commonly used in practice (24), target the
ATP-binding site of a specific kinase and disrupt its activity
toward all of its targets. Type 2 inhibitors, on the other hand,
target and disrupt a specific kinase–target interaction,
leaving the kinase free to act on a subset of its other targets.
Although the latter is not currently common, peptide inhib-
itors have been successfully used in this manner (27), and
there is increasing interest in developing the capacity to
inhibit specific protein-protein interactions within cells (42).

We modeled the potential effects of these inhibitors by
including explicit inhibitor molecules in our loops, with I1
and I2II representing type 1 and type 2 inhibitors, respectively.
We first considered a 1K1P loop with S2 at saturating
concentrations and in the active state (r1 ¼ r2rr ¼ 1.5; see
Fig. 2 A). As one would expect, adding I1 significantly
decreases S1*, because a generic inhibitor for the kinase
will clearly reduce overall phosphorylation of all targets
(Fig. 6 A). However, even an inhibitor that is specific to S2
decreases the phosphorylation of S1 (Fig. 6 A). The spe-
cific inhibitor in this case decreases the concentration of

S2*, reducing competition for the phosphatase and thus
decreasing S1*.The effect of I2II is not as dramatic as that
of I1 for the 1K1P loop, but this nonetheless represents a

FIGURE 6 Effect of kinase inhibitors in the presence of crosstalk. (A(( ) A

1K1P loop with two substrates in the presence of one of two kinase inhib-

itors: I1, which prevents reactions with all targets of the kinase (red), or I2II ,

which specifically disrupts K-KK S2 interactions (blue). We plot the fraction of

phosphorylated S1 against the ratio of [I1] or [I2II ] to [K]. In this case, [KK S1]0 ¼
0.1 � KmKK , [S2]0 ¼ 20 � KmKK and r1 ¼ r2rr ¼ 1.5. Note that using either inhib-

itor causes a decrease in the fraction S1*, although the effect is less

pronounced with the S2-specific inhibitor. In the latter scenario, I2II reduces

the [S2*], which is itself a phosphatase inhibitor for S1*. The net effect of I2II

is thus to decrease S1 phosphorylation. (B) A 1K2P loop with the same

kinase inhibitors as in panel A. The fraction of phosphorylated S1 is plotted

against the ratio of [I1] or [I2II ] to [K]. In this case, [KK S1]0 ¼ 0.1 � KmKK , [S2]0 ¼
20 � KmKK , r1 ¼ 0.5 and r2rr ¼ 1.5. Although the general inhibitor still reduces

S1*, the specific inhibitor increases S1*. This is because decreasing the

concentration of S2* reduces competition for the shared kinase. (C) A

2K1P loop in the presence of both I1 and I2II . Note that because the kinases

are independent in this case, the effects of both inhibitors are identical. The

fraction of phosphorylated S1 is plotted against the ratio of the concentra-

tions of [I2II ] to [K]. In this case, [KK S1]0 ¼ 0.1 � KmKK , [S2]0 ¼ 20 � KmKK ,

r1 ¼ 0.01 and r2rr ¼ 1.5. Both inhibitors decrease S1*, as the reduction in

phosphorylated S2 due to the inhibitors reduces S2*’s inhibition of the S1
phosphatase reaction.
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potentially unintended consequence of a (putatively) spe-
cific inhibitor.

In the 1K2P case, we find exactly the opposite behavior:
whereas I1 decreases S1* as expected, I2 increases the
phosphorylation of the first substrate (Fig. 6 B). This is
because the inhibitor reduces S2 interactions with the kinase,
alleviating competition. In this case, the response of the
system is perhaps more intuitive: because S2 is a competitive
inhibitor of S1 phosphorylation, inhibiting its phosphoryla-
tion in a specific way increases the capacity of S1 to respond
to signals.

In the 2K1P loop, if the two types of inhibitors are aimed
at the second kinase (K2), they have the same net effect.
Because K2 cannot act on S1 in this model, there is no
difference between an inhibitor that simply targets K2 and
one that specifically targets the K2-S2 interaction. When
the second loop is activated by a signal and the first loop
is not, the K2 inhibitor completely abolishes S1 phosphory-
lation (Fig. 6 C). Although the source of this behavior is
clear from Fig. 4 C, the effect is nonetheless striking. In
the absence of knowledge about the shared phosphatase
(or the phenomenology of the 2K1P loop), a response like
the one shown in Fig. 4 C might lead to the erroneous
conclusion that K2 acts directly on S1, or that the inhibitor
in this case is nonspecific.

DISCUSSION

The 1K1P and 1K2P loops discussed above (Fig. 2, A and B)
represent two variations on the classic crosstalk motif, i.e.,
a kinase that has multiple downstream targets in different
pathways. In the traditional view, the coupling between
the substrates in these two loops is understood as simply
arising from the fact that they will all respond to some of
the same upstream signals (34). Our work reveals that a
shared enzyme not only modifies each target but also can
strongly couple the response of one target to that of another
through competitive inhibition at the shared enzyme. For
instance, if the targets in question share the same phos-
phatase, we find that 0th-order ultrasensitivity becomes
transitive; all of the targets in this case will respond in
a switch-like manner to incoming signals (Fig. 3 A). We
also find that in situations where there are a large number
of substrates (Fig. 3 B), the system can respond ultrasensi-
tively even if none of the targets is at a high enough concen-
tration to elicit such a response on its own (Fig. 3 B). It
has been shown that some kinases do in fact act on many
targets (e.g., Akt, the EGF receptors, and Cdk1 (8, 9, 31,
32)), indicating that this collective saturation may represent
a common mechanism for inducing ultrasensitivity without
having to express any given protein target at saturating
levels.

We find that the alternative variation on traditional kinase
crosstalk, the 1K2P loop (Fig. 2 B), displays a completely
different set of behaviors from those observed when the

phosphatase is shared. In this case, the saturating substrate
acts as a type of gatekeeper for the other substrates in the
loop. Below the signal threshold at which this saturating
substrate switches into the phosphorylated state, other sub-
strates will simply be unable to respond to incoming signals,
whereas above this threshold the unsaturating targets will
respond in a hyperbolic manner (Fig. 4 B). Although direct
experimental tests are currently lacking, our predictions for
both 1K1P and 1K2P loops are consistent with available
data (16). Overall, these findings indicate that when a partic-
ular kinase has multiple targets in multiple pathways, it is
difficult to reason in general about the behavior of the sys-
tem in the absence of detailed information regarding phos-
phatase architecture and relative saturation levels (Figs. 3
and 4).

To date, nearly all experimental characterizations of
crosstalk have focused on kinases, and, to our knowledge,
the potential for phosphatases to couple signaling responses
on their own has not been previously considered (34). Our
analysis of the 2K1P loop (Fig. 2 C) demonstrates that
such coupling is readily achieved. Indeed, a shared phos-
phatase can elicit an ultrasensitive response of a target to
signals from kinases that do not directly act on the target
in question (Fig. 4 C). Furthermore, phosphatase architec-
ture plays a role in the sensitivity of a signaling cascade.
We found that cascades in which every substrate shares
a common phosphatase are more responsive to input sig-
nals than cascades with independent phosphatases when
the substrates are at saturating levels. Given that phos-
phatases are generally considered more promiscuous than
kinases, this indicates that phosphatase crosstalk may be
widespread in biological networks. Because the specific
phosphatases that act on many targets in signaling networks
are often not known (38–40), it is currently unclear to what
extent phosphatase crosstalk can influence global network
behavior.

Given the widespread crosstalk present in mammalian
signaling networks, our work highlights the inherent diffi-
culty of predicting a priori the effects that kinase inhibitors
will have on cells. These effects ultimately will depend
not only on the kinase connectivity of the network but
also on the degree of saturation in the targets and the phos-
phatase architecture. In many cases, both of these facts are
unknown—even if the intracellular concentrations of the
target proteins are known, the Km-values for kinases and
(especially) phosphatases are not known, and for many
signaling pathways the relevant phosphatases have not yet
been identified. Understanding these details will be a crucial
component of any attempt to rationally design a kinase inhi-
bition strategy that can elicit some desired effect on some set
of targets without inducing unintended decreases (or in-
creases) in the phosphorylation levels of other proteins in
the network (Fig. 6).

Ultimately, our work indicates that studies on signaling
and regulatory networks need to be increasingly mindful
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of the highly interconnected and interdependent structure of
the networks themselves. This is especially true of phospha-
tases. To understand the real consequences of rampant
kinase crosstalk, we clearly must obtain more reliable infor-
mation about which phosphatases act on which targets, what
adaptor domains they employ, etc. The findings described
above also highlight the fact that individual elements of
signaling networks can exhibit responses that are sensitive
to the context in which the element is found. Care must be
taken to ensure that this dependence on network architecture
informs our interpretation and understanding of how net-
works function and interact with each other.

SUPPORTING MATERIAL

Additional equations, results, and reference (43) are available at http://

www.biophysj.org/biophysj/supplemental/S0006-3495(12)01109-5 .
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Live-Cell Fluorescence Microscopy with Molecular Biosensors: What Are
We Really Measuring?

Jason M. Haugh*
Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina

ABSTRACT Engineered protein biosensors, such as those based on Förster resonance energy transfer, membrane translo-
cation, or solvatochromic shift, are being used in combination with live-cell fluorescencemicroscopy to reveal kinetics and spatial
localization of intracellular processes as they occur. Progress in the application of this approach has been steady, yet its general
suitability for quantitative measurements remains unclear. To address the pitfalls of the biosensor approach in quantitative
terms, simple reaction-diffusion models were analyzed. The analysis shows that although high-affinity molecular recognition
allows robust detection of the fluorescence readout, either of two detrimental effects is fostered. Binding of an intramolecular
biosensor or of a relatively abundant intermolecular biosensor introduces observer effects in which the dynamics of the target
molecule under study are significantly perturbed, whereas binding of a sparingly expressed intermolecular biosensor is subject
to a saturation effect, where the pool of unbound biosensor is significantly depleted. The analysis explores how these effects are
manifest in the kinetics and spatial gradients of the biosensor-target complex. A sobering insight emerges: the observer or satu-
ration effect is always significant; the question is whether or not it can be tolerated or accounted for. The challenge in managing
the adverse effects is that specification of the biosensor-target affinity to within a certain order of magnitude is required.

INTRODUCTION

If our mechanistic understanding of cell regulation is to
dramatically advance, existing methods for quantifying
concentrations and activity states of intracellular molecules
will need to be improved, and new ones will need to be
developed. Although biochemical assays are commonly
used and can be quantitative if performed carefully, these
methods offer no direct information about cell-to-cell
heterogeneity or subcellular localization. Other methods,
such as flow cytometry and immunofluorescence, address
one or both of these issues but are nonetheless end-point
assays with respect to kinetics. In contrast, live-cell micros-
copy uniquely elucidates spatiotemporal dynamics of intra-
cellular processes in real-time and at the single-cell level,
i.e., in conjunction with observations of cell behavior (1–4).

Two distinct variations of this method have been used
extensively:

In the first, a full-length protein or other molecule found
in the cell is tagged with a fluorescent protein or dye, and the
subcellular localization of the conjugate is monitored by
various modes of fluorescence microscopy (5). We may
refer to this as the ‘‘biomarker approach’’. This approach
has been successfully (and cleverly) applied to elucidate
quantitative aspects of cytoskeletal and focal adhesion
dynamics (for example, Danuser and Waterman-Storer (6)
and Kolin and Wiseman (7)); however, it has certain limita-
tions. Biomarkers indicate dynamic localization of the
tagged molecule but not changes in its activity or modifica-
tion states. Moreover, the subcellular localization of a
protein is often affected by multiple factors (protein-protein

and protein-lipid interactions and posttranslational modifi-
cations), in which case the measurement is challenging to
interpret from a molecular standpoint.

The second variation strives to overcome those limita-
tions through the introduction of an engineered fluorescent
probe or protein construct that possesses minimal molecular
recognition. We refer to this as the ‘‘biosensor approach’’.
By engaging in a specific binding interaction to form a
noncovalent complex, the biosensor yields a fluorescence
readout that is meant to indicate the state or abundance of
a particular target. In early applications of the biosensor
approach, fluorescent probes were developed to measure
intracellular concentrations of small molecules, most
notably calcium and cAMP. Protein domains and motifs
have since been used to distinguish between activity or
modification states of protein and lipid targets (8). Irrespec-
tive of the molecular details, intracellular biosensors may be
classified as either intramolecular, where the molecular
recognition element and its target are contained within the
same chain (connected by a flexible linker), or intermolec-
ular, where the recognition module binds to form a bimolec-
ular complex with a target that is endogenous to the cell
(Fig. 1) (9,10). Biosensors of the first type include those
based on intramolecular Förster resonance energy transfer,
with donor and acceptor fluorophores flanking the two
ends of the chain; this approach has been applied most
prominently to study signaling mediated by small GTPases
(11–14) and protein kinases (15–20). Intermolecular biosen-
sors include those based on membrane translocation (21–26)
or solvent-sensitive fluorescence (27,28).

The biosensor approach is not without its own limitations.
As of this writing, there are only a small number of validated
biosensors, as compared with the broad palette of antibodies
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available. More critically, the biosensor readout cannot
perfectly report the intracellular process being studied.
The ideal condition may be stated thus: the biosensor-based
measurement ought to be proportional to the target concen-
tration (at any given time and intracellular location) that
would have been present if molecular recognition by the
biosensor did not occur. To the uninitiated observer, this
might seem to be a reasonable assumption; however, it pres-
ents a clear paradox. Without molecular recognition, there is
no signal, but formation of the complex masks the active
target from deactivating enzymes and endogenous effectors.
This issue, an example of the observer effect in physics, is
endemic to the biosensor approach.

Although the general nature of the problem is intuitive
and has been recognized for some time (29,30), the
following questions have not been addressed in detail:

First, in what specific ways does the biosensor readout
deviate from the ideal response?

Second, for each of those, how does the severity of the
problem depend on the properties of the biosensor
and of the system under study?

Finally, how and to what extent might those issues be
avoided while also allowing for a reliably detectable
signal?

Answers are provided here through the analysis of simple
reaction-diffusion models.

MATERIALS AND METHODS

Model equations

It is supposed that the fluorescence readout is directly related to the local

concentration (or, in the case of a membrane-associated species, the area

density) of a biosensor complex, C. The key assumption is that the complex

is sequestered and thus shielded from participating in other reactions. Thus,

the conservation of the complex is governed by net diffusion (advective or

motor-driven transport could be added if warranted) and binding as follows:

vC

vt
¼ DCV

2Cþ vbind: (1)

The rate term vbind accounts for reversible binding, and two scenarios are

considered: intramolecular and intermolecular binding (Fig. 1). In the intra-

molecular case, the target species is fused with the biosensor, and once acti-

vated, the biosensor transitions reversibly between activated and unbound

(T*) and bound (C) forms. In the intermolecular case, the T* species forms

a complex with a fluorescent biosensor (local concentration [B]) to form C.

According to mass action,

vbind ¼
�
konk T� � koffk C; intramolecular;
konk ½B½½ �T� � koffk C; intermolecular:

(2)

In both cases, the free target becomes available via an activation process,

T / T*, with local rateTT vact. Activation is reversed via deactivation with

local rate vdeact. A more complete model would additionally account for

target interactions with endogenous binding partners. With the common

assumption of slow synthesis and turnover rates, the balances for the inac-

tive and active target forms are as follows:

vT

vt
¼ DTV

2T � vact þ vdeact; (3)

vT�

vt
¼ DT�V

2T� þ vact � vdeact � vbind: (4)

The simplest plausible rate laws for vact and vdeact were assumed as follows:

vact ¼ kactkk Sðt; xÞT; (5)

vdeact ¼ kdeactkk T�: (6)

Thus, the temporal or spatial dependence of the response is driven by

a case-specific signal function, S(t,x).

In the intermolecular case, the conservation of the free biosensor must

also be accounted for, and in so doing one would need to consider whether

complex formation occurs in the same cellular compartment or involves

translocation of the biosensor from the cytosol to a membrane surface

(m). The latter is assumed to be the case here; further assuming slow

synthesis and turnover of the biosensor,

v½B½½ �
vt

¼ DBV
2½B½½ �; DBðn$V½B½½ �Þjm ¼ vbindjm: (7)

Note that in Eq. 7 and in Eq. 8 below, conversion between numbers of mole-

cules and moles as needed is implicit.

For analysis, models are often simplified by assuming well-mixed

compartments (as in Figs. 2–4). In that case, the diffusion terms in Eqs.

1, 3, and 4 are neglected, and Eq. 7 reduces to

d½B½½ �
dt

¼ �Amem

VcytVV
vbind;

½B½½ �ðtÞ ¼ ½B½½ �0 �
Amem

VcytVV
CðtÞ;

(8)

where Amem/VcytVV is the ratio of the membrane surface area divided by the

volume of cytosol, and [B]0 is the free biosensor concentration when no

active target is present.

FIGURE 1 Two general classes of molecular biosensors. (a) An intramo-

lecular biosensor contains both the target and molecular recognition

element, connected by a linker. The inactive target T is activated by an

endogenous intracellular process to produce the active, unoccupied target

T*; the activated state is bound by the molecular recognition element toTT

form the complex C, generating the biosensor readout. (Illustration)

Common scenario where intramolecular binding brings a Forster resonance

energy transfer pair into close proximity. (b) An intermolecular biosensor,

B, contains a molecular recognition element that binds to an endogenous

target to form a bimolecular complex, C. (Illustration) Common scenario

where complex formation results in membrane translocation of the tagged

biosensor.
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Model implementation

Models were implemented in the Virtual Cell software environment (www.

vcell.org) (31) and are publicly accessible under the BioModel ‘‘Biosensor

simple’’. For all models, values of the rate constants are specified in the

corresponding figure caption. In Figs. 2, 4, and 5, the value of kdeactk was

set at 0.01 s�1, consistent with a signaling state lifetime of ~1 min

(e.g., Schneider and Haugh (32)). In Fig. 3, a 10-fold higher value (kdeactk ¼
0.1 s�1) was considered.

For well-mixed compartmental models (Figs. 2–4), the cytosol was

assigned a reasonable volume of 1.667 pL¼ 1667 mm3, such that a concen-

tration of 1 mM corresponds to 106 molecules in that volume; the plasma

membrane was assigned an area of 1000 mm2.

In models accounting for spatial gradients (Fig. 5), the spatial domain is

a thin rectangle with length L ¼ 100 mm (typical length scale for a fully

spread and polarized fibroblast) and height ¼ 3.4 mm (to approximately

match the Amem/VcytVV ratio assumed in the compartmental model calcula-

tions). A spatially focused stimulus is applied, confined to the small domain

x˛ (0,0.01L); under these conditions, the problem is effectively one-dimen-

sional with a point source at one end. Typical effective diffusivity values

were assigned, with DB ¼ 30 mm2/s for the biosensor in the cytosol and

DT ¼ DT*TT ¼ DC ¼ 0.5 mm2/s for all membrane species. For numerical

implementation, grid spacings of 0.05 and 0.1 mm were used, yielding

approximately identical results.

RESULTS AND DISCUSSION

Biosensor binding generally reduces the
availability of the active target and slows down
its kinetics of accumulation and clearance

We consider the common situation where the active target
molecule of interest is not subject to deactivation while it

FIGURE 2 Perturbation of active target level and kinetics: intramolecu-

lar biosensors, or intermolecular biosensors expressed in stoichiometric

excess. (a) Kinetic scheme for an intramolecular biosensor, following the

nomenclature established in Fig. 1 a; the scheme holds equally for an inter-

molecular biosensor expressed in excess ([B]z constant). In the hypothet-

ical scenario, stimulation (S ¼ 1) is pulsed for a period of 1000 s. (b) The

fractions of the total biosensor pool in the free, active target (T*,TT left) and

complexed (C, right) states are plotted as a function of time. The affinity

of the molecular recognition element was adjusted by progressively

decreasing the dissociation rate constant koff, as indicated:ff koff ¼ 1 s�1,

0.1 s�1, or 0.01 s�1. (Dashed curve) Active target kinetics in the absence

of complex formation (koff ¼ N). Other parameter values were fixed at

kon ¼ 1 s�1, kactk ¼ 0.001 s�1, and kdeactk ¼ 0.01 s�1. (c) Same as panel b,

except that the ratio of koff/ff kon was fixed at 1, with koff ¼ kon ¼ 1 s�1,

0.1 s�1, or 0.01 s�1.

FIGURE 3 Response of an intramolecular biosensor to gradually

changing input. (a) Assuming the kinetic scheme depicted for an intramo-

lecular biosensor, the scenario presented in Fig. 2 was altered so that the

activation of the target during the first 1000 s is more gradual, with

S(t) ¼ 1 – exp(�0.005t) (t in s). The fractions of the total biosensor pool

in the free, active target (T*,TT left) and complexed (C, right) states are plotted

as a function of time. The affinity of the biosensor was adjusted by progres-

sively decreasing the dissociation rate constant koff:ff koff ¼ 1 s�1, 0.1 s�1, or

0.01 s�1. Other parameter values were fixed at kon ¼ 1 s�1, kactk ¼ 0.01 s�1,

and kdeactkk ¼ 0.1 s�1. (b) Same as panel a, except that the stimulation

was assumed to follow a linear ramp, with S(t) reaching a value of 1 at

t ¼ 2000 s.

Biophysical Journal 102(9) 2003–2011

Modeling Live-Cell Biosensor Experiments 2005



is sequestered in the biosensor complex. For example, at
least by all contemporary accounts, recognition of phos-
phorylated molecules precludes access by phosphatases
(33), and binding of effectors to active small GTPases
hinders GTP hydrolysis (34–36). To illustrate how this
impacts the biosensor output, a simple yet reasonable model
of target activation and deactivation is imposed (Fig. 2 a):
a step pulse of an external signal turns activation on and
off, and the rates of activation and deactivation are linear
with respect to substrate concentrations. For now, the model
is further simplified by supposing that complex formation
is intramolecular. As shown in Fig. 2 b, progressively
increasing the affinity of the biosensor complex results in:

1), reduction of the free target concentration at steady state,
and 2), increasingly sluggish kinetics relative to the scenario
where the complex does not form. The extent of the former
effect depends on the extent of activation in the absence of
biosensor binding. Thus, for the scenario where as much as
half of the active form is in the biosensor complex (C¼ T*),TT
but most target molecules remain inactive at steady state
(T ¼ 10T*; Fig. 2TT b, cyan curves), the steady-state value
of T* is reduced by only a modest percentage. By compar-TT
ison, the effect on kinetics is more direct; if half of the active

FIGURE 4 Saturation of the biosensor readout: intermolecular biosen-

sors with active target in excess. (a) Assuming the kinetic scheme depicted

for an intermolecular biosensor, applying the nomenclature established

in Fig. 1 b, stimulation (S ¼ 1) is pulsed for a period of 1000 s. The

membrane densities of the free, active target (T*,TT left) and target-biosensor

complexes (C, right) are plotted as a function of time. The affinity of the

biosensor was adjusted by progressively decreasing the dissociation rate

constant koff:ff koff ¼ 1 s�1, 0.1 s�1, or 0.01 s�1. Other parameter values

were fixed at T(0)TT ¼ 104 mm�2, [B]0 ¼ 0.1 mM, kon ¼ 1 mM�1 s�1, kactk ¼
0.001 s�1, and kdeactk ¼ 0.01 s�1. (b) Same as panel a, except that the

stimulation was assumed to follow incomplete adaptation according to

SðtÞ ¼ 0:1þ 0:9 expð�0:005tÞ (t in s).

FIGURE 5 Actual or apparent blurring of spatial gradients. Stimulation

is focused in a small region at one end of the cell, and concentration profiles

were calculated at steady state. To aid in the evaluation of relative gradient

steepness, all concentration profiles are presented as semilog plots. (a)

Assuming the kinetic scheme depicted for an intramolecular biosensor,

the steady-state fractions of the total biosensor pool in the free, active target

(T*,TT left) and complexed (C, right) states are plotted as a function of posi-

tion. The affinity of the molecular recognition element was adjusted by

progressively decreasing the dissociation rate constant koff:ff koff ¼ 1 s�1,

0.1 s�1, or 0.01 s�1. (Dashed curve) Active target kinetics in the absence

of complex formation (koff ¼ N). Other parameter values were fixed at

kon ¼ 1 s�1 and kdeactk ¼ 0.01 s�1. (b) Same as panel a, except that the

kinetic scheme depicted for an intermolecular biosensor was assumed,

with T(TT x,0) ¼ 104 mm�2, [B]0 ¼ 0.1 mM, and kon ¼ 1 mM�1 s�1. (Inset)

Associated concentration profiles of the free biosensor, [B](x(( ).
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form is sequestered (kon ¼ koff), for example, then the char-
acteristic time to reach steady state is prolonged by roughly
a factor of two. As shown in Fig. 2 c (orange curves), addi-
tional sluggishness of the biosensor readout begins to appear
if the timescales of biosensor complex association and
dissociation are not significantly faster than that of target
deactivation.

The more intuitive of these effects is the tendency of
complex formation to buffer the active target concentration
at steady state. The less appreciated but more consistently
detrimental effect as shown by the calculations concerns
the transient kinetics, as during the response of the system
to external stimulation. When the concentration of free
target is increasing, the net formation of the complex
reduces the rate of free target accumulation (that is, makes
it less positive). Conversely, when the concentration of
free target is decreasing, the net dissociation of the complex
slows the rate of decline (makes it less negative). Thus,
complex formation generally causes the system to respond
more sluggishly. The adequacy of a biosensor hinges, in
part, on the mildness or severity of these effects under
various conditions.

The calculations described above effectively assume
instantaneous on- and off-states for the upstream signal,
S(t). This scenario approximates rapid, receptor-mediated
activation followed by rapid, pharmacological inhibition,
as considered previously (32,37). In many other situations,
the dynamics of S(t) might be relatively slow on the time-
scale of the mean lifetime of T*, 1/kdeact, in which case
the ideal biosensor would faithfully track the kinetics of
S(t). To evaluate this situation, an alternate scenario in
which S(t) increases and approaches a plateau gradually, fol-
lowed by rapid inhibition of S, was considered (Fig. 3 a).
To ensure that the biosensor could more readily respond
to changes in S(t), higher values of kact and kdeact were
used here. Although the biosensor response, C(t), is pre-
dicted to be robust and roughly matches the timescale of
S(t), the decay of the system after rapid inhibition is slowed
dramatically for kon/koff >> 1 (Fig. 3 a). This disparity
between the kinetics of the stimulation and inhibition
phases of the hypothetical experiment is consistent with
measured kinetics of the c-Jun N-terminal kinase activation
reporter (20).

Whereas the C(t) kinetics in the stimulation phase quali-
tatively reflect those of S(t), quantitative correspondence
between the two was found to suffer when kon/koff >> 1.
To show this definitively, a different scenario was consid-
ered in which S(t) increases as a slow, linear ramp (Fig. 3 b).
As expected, the biosensor response C(t) deviates percep-
tibly from linearity for high kon/koff. Analysis of the system
shows that two effects influence the fidelity of the biosensor
response. At short times, the rate of biosensor response is
affected according to how severely complex formation
prolongs the mean lifetime of the active target, which is
approximately equal to (1 þ kon/koff)/kdeact. At long times,

fidelity is limited by the availability of the unbound target
when most of the biosensor is driven into the bound state.

From a mathematical point of view, these analyses of
intramolecular complex formation hold equally for inter-
molecular complex formation with the biosensor in vast
excess (with kon replaced by kon[B], where the free biosensor
concentration [B] is approximately constant); however, from
a biological point of view, it is important to distinguish the
two. In the case of an intramolecular biosensor, the active
target is a part of the biosensor itself. Therefore, high-
affinity complex formation does not have a direct impact
on the endogenous biology (although indirect effects via
sequestration of activating/deactivating enzymes and endog-
enous effectors, beyond the analysis presented here, should
be considered). By comparison, an intermolecular biosensor
expressed at excessive levels has a buffering effect that not
only affects the kinetics of the biosensor readout; more
critically, it can act as a dominant negative in terms of bio-
logical function.

Suggestive of such a buffering condition, Yip et al. (39)
reported that a carcinoma cell line with heterologously ex-
pressed Btk pleckstrin homology (PH) domain, which binds
to the plasma membrane lipid PtdIns(3,4,5)P3 with high
affinity (KD ¼ 80 nM (38)), showed a dramatic increase in
the half-life of PtdIns(3,4,5)P3 under otherwise rapid turn-
over conditions (39). Tagged Btk PH domain has been em-
ployed as an intermolecular biosensor because of its unique
specificity for PtdIns(3,4,5)P3 relative to PtdIns(3,4)P2 (30);
however, because of its high affinity, the Btk PH domain can
be expected to perturb free PtdIns(3,4,5)P3 levels and
kinetics when expressed at excessive levels in cells.

With intermolecular binding, excess biosensor
can affect free target kinetics, whereas excess
target can result in a saturated readout

In the previous section, we considered situations in which
the fluorescent biosensor is not stoichiometrically limiting
for complex formation. The opposite situation, which is
relevant only to intermolecular binding, arises when the
target molecule is in vast excess and the biosensor affinity
is sufficiently high (KD sufficiently low), such that nearly
all of the biosensor molecules in the cell are in complex.
This scenario is illustrated for two simple models of target
activation: 1), a transient pulse (as in Fig. 2), and 2), a decay
with incomplete adaptation. Both sets of associated calcula-
tions show that as the active target progressively depletes the
limiting pool of available biosensor, the free target is not
significantly perturbed; however, the biosensor readout
does not quantitatively reflect the free target kinetics. The
pulsed activation case (Fig. 4 a) illustrates that the increase
in complex formation after stimulation approaches steady
state faster than does the free target, because the concentra-
tion of available biosensor is initially much higher than its
steady-state value. Conversely, after activation is turned
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off, the decay of the complex is relatively sluggish, as the
liberation of free biosensor counterbalances the decay of
free target concentration. The incomplete adaptation case
(Fig. 4 b) further illustrates that the change in the abundance
of the complex (the apparent degree of adaptation) tends to
be more modest than the actual change in free target concen-
tration. In the limit of near-complete depletion of available
biosensor (Fig. 4 b, orange curves), the adaptation kinetics
of the target would be missed completely.

These calculations demonstrate that, when an intermolec-
ular biosensor is limiting for complex formation, perturba-
tion of the free target accumulation or clearance kinetics
is minimal. Rather, the issue is that formation of the
complex is saturated and thus serves as a poor quantitative
readout. A prominent example of the saturation effect is
the binding of tagged PLCd PH domain, which binds the
plasma membrane lipid PtdIns(4,5)P2. In many cells at
least, PtdIns(4,5)P2 is quite abundant; its characteristic
concentration on a whole-cell basis has been estimated at
10 mM, which is much higher than the measured biosensor
KD of 2 mM (40). Hence, it is widely appreciated that
tagged PLCd PH tends to be mostly in complex with
PtdIns(4,5)P2 (or with the soluble hydrolysis product,
Ins(1,4,5)P3, in the cytosol) (40), and thus the membrane-
localized fluorescence in cells is insensitive to treatments
that partially reduce the level of PtdIns(4,5)P2 by inhibition
of its resynthesis (24).

A spatial gradient of free target is made
(or appears to be made) less steep as
a consequence of biosensor complex formation

The spatial range (or dynamic length scale) of an active
chemical species is defined by how far it diffuses on average
before reverting to the inactive state. If biosensor-target
complexes are not subject to deactivation, it follows from
the intuition developed above that the spatial range of the
active target would be extended when a significant fraction
of it is bound. Thus, formation of the complex makes the
active target gradient shallower than it would have been in
the absence of binding. This effect has been recognized
and discussed in the context of fluorescent biosensors
(41), and calculations show that it is relevant to the case
of an intramolecular biosensor with high-affinity binding
(or an intermolecular biosensor with biosensor in excess)
(Fig. 5 a). In the simplified scenario assumed here, a one-
dimensional, steady-state gradient is formed via constant
activation within a thin strip located at one end of the spatial
domain and deactivation throughout. In the absence of
complex formation, the concentration profile of the active
target is approximately exponential, with a spatial decay
constant that scales as the square root of kdeact. Therefore,
with an intramolecular biosensor, the steepness of the active
target gradient (the negative slope of the gradient on a semi-
log plot) is affected according to the fraction of the active

form that is sequestered. For example, 50% sequestration
(C ¼ T*) increases the spatial range of the target and thus
decreases the steepness of its gradient by a factor of roughly
square-root of 2 (Fig. 5 a; compare the cyan and black
curves). In more extreme cases, the spatial range is compa-
rable to the cell length, and reflection at the distal boundary
tempers the gradient even more (Fig. 5 a, orange curves).
Consistent with the analysis presented in Fig. 2 b, the other
effect is a reduction in free target concentration at the site of
its activation.

The alternative scenario, where the biosensor is intermo-
lecular and the endogenous target is in excess, was also
investigated (Fig. 5 b). In this case, based on the analysis
presented in Fig. 4, one might predict that biosensor binding
would have no appreciable effect on the active target
gradient, but the gradient of biosensor-target complexes
would not be a faithful reflection thereof. Indeed, the calcu-
lations demonstrate that the free target profile is not signif-
icantly perturbed (except in the tail of the profile, where the
free target concentration is low), while the gradient of bound
complex is rendered progressively more shallow as the
affinity and lifetime of the biosensor-target complex are
enhanced (Fig. 5 b). This effect does not follow directly
from the saturation effect illustrated in Fig. 4, however—
which is to say that global depletion of the free biosensor
does not adequately explain the result. Rather, local deple-
tion of the free biosensor, manifest as an opposing gradient
in [B](x), causes the C(x) gradient to be tempered relative to
that of T*(x) (Fig. 5 b, inset). By manipulating Eqs. 1 and 7
for an effectively one-dimensional system at steady state, it
is apparent that

Vcyt

d½B�
dx

¼ �DC

DB

�
Amem

dC

dx

�
: (9)

Equation 9 shows that, because diffusion in the cytosol is
relatively fast (DB >> DC), the absolute gradient in the
cytosol is always much shallower than that of the
membrane-associated complex; however, the relative gradi-
ents (fractional changes in [B] and C per unit length)
become closer in magnitude with progressively greater
binding of the biosensor at that location. Also contributing
to the tempering of the observed C(x) gradient is the poten-
tial for a long-lived complex (42). This distinct effect is
significant when the mean lifetime of the complex (1/koff)
is comparable to or greater than that of the active target
(1/kdeact) (Fig. 5 b, orange curves).

Constraints and trade-offs in the practical
application of intra- and inter-molecular
biosensors for live-cell fluorescence microscopy

The analyses presented above demonstrate the potential
pitfalls that might, unbeknownst to the observer, give
misleading results in live-cell imaging experiments. Here,
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reasonably general guidelines are developed for diagnosing
and avoiding such issues, framed in terms of the properties
of intra- and intermolecular biosensors that might be intro-
duced into cells. Again, the goal of the experimental design
is for the concentration of bound complex to accurately
reflect changes in activation status of an endogenous target,
as they would normally occur. But this ideal must be
balanced against the practical consideration of what can
be reliably measured by standard fluorescence microscopy.

Let us first consider the properties of an intramolecular
biosensor. In this case, the design space is defined by two
dimensionless ratios: the kon/koff (affinity constant) of intra-
molecular binding and the context-dependent ratio of target
activation and deactivation frequencies in the cell (Fig. 6 a).
Through the analyses described in the previous sections, it
was demonstrated that if kon/koff were too high, the apparent
kinetics and spatial pattern of the readout would be per-
turbed relative to those of the endogenous target (the
observer effect). On the other hand, if either the kon/koff ratio
or the ratio of active/inactive unbound target were too low,
there would not be enough of the bound complex C to
reliably quantify against the background of fluorescent
biosensor molecules in the T and T* states. These competingTT
considerations together define a region of feasibility,
wherein one would hope to operate (Fig. 6 a, shaded
region). The analysis allows as much as half of the active
target to be shielded from deactivation (kon/koff % 1) and
considers that the readout could be reliably measured if as
little as 5% of the biosensor were in the C form. Still, these
considerations impose restrictive constraints on both the

complex affinity, which must be of intermediate strength,
and the extent of target activation, which must be suffi-
ciently high. Obviously, less generous constraints would
shrink or altogether eliminate the region of feasibility.
Another caveat is that higher values of kon/koff could be
tolerated, up to a point, when the shape of the temporal
or spatial response is not sensitive to the rate of target
deactivation, i.e., when the upstream signal S(t,x) changes
gradually in time or space (as considered in Fig. 3). Higher
kon/koff ratios would also be tolerable for biosensors with
conformations that breathe enough to allow a nonzero rate
of deactivation while in the bound state.

In the case of an intermolecular biosensor, the consider-
ations are similar but with the additional constraint that
the readout should not be saturated (complex formation
should not be limited by the availability of biosensor).
Here, the design space is adequately framed in terms of
concentrations: those of the biosensor and active target rela-
tive to the value of the intermolecular KDK . The total
biosensor concentration is fixed here at [B]0 ¼ 0.1 mM,
because this is at the lower end of fluorescent protein
concentrations that are visible by standard fluorescence
microscopy; hence, the design space is defined by variable
ranges of the active target concentration (calculated on the
basis of the cytosolic volume) and KDK (Fig. 6 b). If neither
of these values is >0.1 mM, the biosensor concentration is
in excess, and the spatiotemporal dynamics of the endoge-
nous target would be significantly perturbed as in the intra-
molecular case. The other considerations concern the active
target concentration in relation to KDK ; if it is too low, not
enough of the fluorescent biosensor will be in complex,
whereas if it is too high, the free biosensor will be signifi-
cantly depleted, and the measurement will approach satura-
tion. The shaded region of feasibility allows up to 50%
depletion of free biosensor and, as before, considers that
only 5% of the biosensor needs to be in complex for a reli-
able measurement (Fig. 6 b). It is concluded that for quanti-
tative studies with an intermolecular biosensor, the active
target should be present at a high nanomolar concentration
or above, and the ideal biosensor would possess a KDK value
moderately above that.

Prospects for truly quantitative live-cell imaging
of cell biochemistry

As a cell biology workhorse, live-cell fluorescence micros-
copy is a powerful approach, and the resulting measure-
ments can be reasonably quantitative if great care is taken.
Yet, as illustrated in this article, even perfectly measured
live-cell biosensor readouts cannot perfectly track the
spatiotemporal dynamics of intracellular processes, and in
extreme cases, such measurements can be misleading.
Two steps may be taken to mitigate the issue.

First, the binding affinity of a biosensor should be
characterized and optimized for a particular application.

FIGURE 6 Design space for engineering suitable biosensors. In each

case, a desirable region of feasibility is defined by the shaded area. (a)

The design space for an intramolecular biosensor is defined by the affinity

of complex formation and the extent of target activation. To the left of the

desired region, 5% or less of the biosensor molecules are in complex, result-

ing in a readout that is difficult to measure. To the right of the desired

region, 50% or more of the modified target is bound, resulting in significant

perturbation of the observed kinetics. (b) The design space for an intermo-

lecular biosensor is defined by the biosensor binding affinity and the

concentration of the active target. A moderate biosensor expression level

of 0.1 mM is assumed. In addition to the criteria outlined under panel a,

saturation of complex formation becomes significant when the active target

concentration exceeds both the concentration and binding KDK of the

biosensor.
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Practitioners of live-cell microscopy should be aware that
high-affinity molecular recognition is not desirable. The
traditional approach of using modular-binding domains
found in nature is too restrictive in that regard; hence,
identifying biosensors using protein-engineering methods
(43) presents an attractive alternative. Screening protein
variant libraries for desired binding properties is well docu-
mented (44).

Second, mathematical models may be used to deconvo-
lute the data so as to account for the deviation from ideality.
Provided that the binding affinity and intracellular concen-
tration of the biosensor were known, one could back-calcu-
late the free target concentration or density, T*(x,t), from the
measured C(x,t). Indeed, mathematical recipes for accom-
plishing this in the context of calcium imaging have been
offered (45), and the use of modeling to account for satu-
rable translocation of phosphoinositide biosensors has
been demonstrated previously (32,46). This method is
complicated, however, when the target perturbation effect
is significant; as illustrated in Fig. 2 b, the free target
kinetics might be markedly altered relative to the unper-
turbed scenario. Fitting the data to a more complete
model, including the parameters characterizing endogenous
target dynamics, would allow the unperturbed kinetics or
spatial pattern to be reconstructed (47), but formulation of
such a model requires advance knowledge or strong assump-
tions about the mechanisms under study. As with other
quantitative approaches in cell biology, analysis of live-
cell microscopy data is potentially powerful yet also poten-
tially perilous.

This work was supported by grants (Nos. 0828936 and 1133476) from the

National Science Foundation.
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ABSTRACT There is increasing evidence for the presence of an alternative code imprinted in the genome that might contribute
to gene expression regulation through an indirect reading mechanism. In mammals, components of this coarse-grained regu-
latory mechanism include chromatin structure and epigenetic signatures, where d(CpG) nucleotide steps are key players.
We report a comprehensive experimental and theoretical study of d(CpG) steps that provides a detailed description of their phys-
ical characteristics and the impact of cytosine methylation on these properties. We observed that methylation changes the phys-
ical properties of d(CpG) steps, having a dramatic effect on enriched CpG segments, such as CpG islands. We demonstrate that
methylation reduces the affinity of DNA to assemble into nucleosomes, and can affect nucleosome positioning around transcrip-
tion start sites. Overall, our results suggest a mechanism by which the basic physical properties of the DNA fiber can explain
parts of the cellular epigenetic regulatory mechanisms.

INTRODUCTION

Determining the mechanisms that regulate gene expression
in complex organisms is the next frontier of genomics
research (1). In the traditional paradigm, specific proteins
regulate gene expression through the recognition of certain
sequence signals (by means of specific hydrogen-bond inter-
actions) upstream of the transcription start sites (TSSs) (2).
Nevertheless, there is increasing evidence about the pres-
ence of an alternative code that may contribute to a rough
regulation of gene expression through an indirect reading
mechanism, probably signaled by chromatin structure and
epigenetic marks (3,4). This mechanism is unlikely (even
in a synergistic manner) to achieve the fine-tuning and spec-
ificity of the direct protein-DNA readout. Conversely, it
probably plays a pivotal role in basal gene expression,
which requires less regulation and for which the extreme
cost of developing a highly specific protein regulation infra-
structure seems unjustified. Key players in this regulatory
mechanism may be d(CpG) steps, which despite being
largely underrepresented in the genome of complex organ-
isms are enriched in nearly 60% of human promoters, where
they often define ultrarich CpG segments, the so-called CpG
islands (5,6). Even if CpG islands do not contain specific
transcription binding motifs, they clearly favor the down-
stream binding of the transcription machinery (7), particu-
larly for those genes that are usually active. The molecular
basis of the d(CpG) effect on gene regulation remains

unclear, although it has been suggested to be related to the
definition of DNA fiber properties (8).

One of the most intriguing features of the d(CpG) step is
its ability to undergo nonmutagenic chemical modifications
such as cytosine methylation (9). In mammalian genomes,
DNA methyltransferases (DNMTs) can transfer a methyl
group from S-adenosylmethionine to cytosine at CpG dinu-
cleotides (10). The bulk of the methylation takes place
during DNA replication in the S-phase of the cell cycle
(11), and is the most abundant form of post-replicative
DNA modification observed in eukaryotic organisms (12).
During this process, the cytosine is flipped 180� out of the
DNA backbone into an active-site pocket of the enzyme
(13) where methylation of cytosine takes place.

Intriguingly, methylation of cytosines seems to be an erro-
neous decision of evolution because it dramatically increases
the chances of C/T mutation, but this seeming disadvan-
tage is compensated for by the gain in regulatory possibilities
offered by methylation. Indeed, highly methylated DNA is
typically associated with inactive genes, whereas methyla-
tion depletion is observed for active genes (14,15). Further-
more, most cytosines in CpG steps, except those in CpG
islands, are methylated in vertebrate somatic cells (16,17).
The first step of methylation occurs early in mammalian
development as a result of de novo DNMTs (Dnmt3a and
Dnmt3b) (18) that methylate CpG steps in both DNA strands.
The methylation profile is conserved by maintenance DNA
methyltransferase (Dnmt1) throughout cell divisions. During
replication, daughter strands are nonmethylated, resulting in
hemimethylated DNA. Dnmt1 recognizes hemimethylated
CpG steps and methylates the daughter strand (19). Recent
studies have demonstrated that changes in methylation
patterns along CpG islands and CpG shores (methylation
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hotspots on the outskirts of CpG islands (20)) correlate with
tissue differentiation and cancer, proving the role of methyl-
ation in cellular reprogramming (20,21,23,24). The regula-
tory function of methylated cytosines (hereafter referred to
as MeC) was traditionally explained by their interaction
with methyl-CpG binding domain proteins (MBDs) (18),
but considering the prevalence of cytosine methylation,
MBDs alone cannot entirely account for the role of d(CpG)
methylation in the cell. An increased level of complexity is
provided by the almost nonexistent sequence specificity of
theDNMTs, precluding themechanism underlying themeth-
ylation reaction (26).

Here we present a comprehensive theoretical analysis of
the d(CpG) properties along with an experimental validation
of key theoretical findings. We show that d(CpG) steps
display unique physical properties, especially in the context
of CpG islands, that severely change upon methylation.
Our calculations suggested, and experiments confirmed,
that DNA segments containing MeC are very stiff and hard
to bend, and display a lower tendency to circularize or form
nucleosomes by wrapping around histones. The latter effect
has striking consequences for the organization of nucleosome
arrays near TSSs, which in turn modifies the accessibility of
regulatory proteins, leading to alterations in the pattern of
DNA expression. Overall, without diminishing the role
of specific regulatory proteins, basic descriptors of DNA
physical properties can help us rationalize several seemingly
disconnected pieces of the puzzle of DNA regulation.

METHODS

Molecular-dynamics simulations

We performed molecular-dynamics (MD) simulations on an array of

different oligomers containing CpG steps, in both their methylated and non-

methylated forms (see Table S1 in the Supporting Material). We also

included in our analysis trajectories of unmethylated CpG step data from

the Ascona B-DNA Consortium (ABC) (27) database in all tetramer envi-

ronments to enrich the dynamics database. All simulations were carried

out in duplicates for 100 ns (after equilibration) using explicit solvent,

the parmbsc0 refinement of the Amber force field (28), and state-of-the-

art simulation conditions (Supporting Material).

Mesoscopic model of DNA flexibility

We derived a flexibility model from different MD equilibrium trajectories

using a harmonic model (29–31). Accordingly, we projected the MD trajec-

tories onto a helical reference system to obtain equilibrium values and

derive the covariance matrix, which we then inverted to recover the stiffness

matrices for each basepair step, from which a mesoscopic estimate of the

energy associated to a given deformation can be easily computed (29,32) as

E ¼ 0:5
X6
i¼ 1

X6
j¼ 1

fijDXiDXj;

where DXi is the perturbation from equilibrium geometry (Fig. 1), and fij are

elements ofQ, whereQ is the 6� 6 stiffness matrix expressing the stiffness

of a given step to deformation in roll, tilt, twist, slide, shift, and rise (see

Supporting Material, Fig. 2, and Pérez et al. (33)). Alternatively, global

deformation parameters can be derived using a similar approach, but

considering global instead of local geometric descriptors (see Fig. S1, Sup-

porting Material, and Lankas et al. (34)). Note that elastic parameters

derived from protein-DNA crystal complexes (29,31) or simulation data

are in good agreement (33), supporting their use to describe DNA flexi-

bility. Here, we favored the use of MD-derived values for consistency

with the newly derived parameters describing MeCpG steps (which cannot

be derived from analysis of crystal structures).

In this work, we used a mesoscopic method to estimate deformation

energy related to nucleosome formation and circularization assays. This

implies that indirect readout mechanisms prevail over the direct readout

for the description of sequence preferences in nucleosome binding. A

second implication is that these deformations follow a harmonic behavior.

Both of these assumptions represent simplifications, and thus the validity of

the method is not always guaranteed (32,35,36).

Circularization assays and modeling

We carried out DNA circularization experiments to validate our theoretical

estimations about the impact of methylated cytosines on DNA physical

properties. For this purpose, we designed a short polymerizable oligonucle-

otide (d(GAAAAAACGGGCGAAAAACGG)$d(TCCCGTTTTTCGCCC
GTTTTT)) based on a reported sequence favoring the formation of mini-

circles (37), with the incorporation of a central CpG dinucleotide subject

to be methylated and 50-sticky ends to enable the formation of multimers.

Thus, under favorable ligation conditions, the multimers form circles that

are as short as allowed by the geometry and flexibility of the DNA

(Fig. 3). As a negative control, we selected a previously reported nonbend-

able oligonucleotide (d(GCAAATATTGAAAAC)$d(GCGTTTTCAATAT
TT; see Supporting Material for details). The ligation products were

analyzed by atomic force microscopy (AFM) and by two-dimensional gel

electrophoresis (Fig. 3, Fig. S2, Fig. S3, and Supporting Material).

Circularization efficiency was determined based on the J-factor, which

defines the ratio of circular and linear DNA species for a given sequence

length (37). Experimental J-factors were extracted from the linear and

circle DNA signal intensities as detected on two-dimensional gels (see Sup-

porting Material and Fig. S3). Although the absolute J-factors depend on

the experimental setup, the ratio of J-factors of methylated versus nonme-

thylated oligos provide a reliable measure of the impact of methylation on

DNA circularization. Accordingly, experimental J-factors can validate

whether theoretical suggestions regarding physical changes induced by

methylation are correct. We derived theoretical J-factors from Monte Carlo

simulations (Supporting Material) using mesoscopic descriptors derived

from MD simulations (see above).

Mesoscopic model of nucleosome deformation
energy

We theoretically determined the ability of a 147-mer DNA sequence to

wrap around a nucleosome using harmonic deformation energy as

described above considering mesoscopic descriptors. To reduce the noise,

we determined the deformation vector (DX above) using the target geom-

etry obtained by Fourier-averaging all available crystal structures of nucle-

osome particles. As noted above, our mesoscopic model is useful in so far

as histone-bound DNA deforms harmonically and the indirect readout has

an important contribution in directing nucleosome formation. Regarding

the first point, the rotational degrees of motion in nucleosomes (twist,

roll, and tilt) clearly fall within the normal fluctuations of DNA (38,39),

and only the translational parameter slide shows slightly more positive

values than expected. Clearly, evolution has optimized nucleosome posi-

tioning sequences to have flexible steps such as d(CpA) and d(TpA) in

crucial positions to accommodate the deformations required for nucleo-

some binding (see results of SELEX experiments in Thåström et al.
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(40)). Note also that by using a single conformation to model all nucleo-

somes, Tolstorukov et al. (38) and Balasubramanian et al. (39) found

a high degree of correlation between the predictions arising from harmonic

deformation energies and nucleosome positioning sequences, a result that

was consistent with nucleosome location experiments performed by our

group (41). Thus, without ignoring its limitations, we believe the model

can be useful to rationalize nucleosome positioning.

In vitro nucleosome reconstitution

To assess the effect of methylated DNA on nucleosome assembly, we

selected a nucleosome positioning sequence (DNA construct 601.2 in

Anderson and Widom (42)) to reconstitute nucleosomes in vitro after incu-

bation with histones, before and after extensive DNA methylation (see Sup-

porting Material). Methylated states were verified by DNA sequencing. The

reconstituted nucleosomes were subsequently analyzed by gel shift assays

(see Fig. 4).

RESULTS

Physical properties of CpG steps and CpG islands

MD simulations performed here in conjunction with those
retrieved from the ABC database (27) revealed that

sequence is crucial for defining the DNA equilibrium geom-
etries (Fig. 1). In general, Pyr-Pur steps show a lower rise
and twist, as well as higher roll values, than the rest of the
dinucleotide steps. Additionally, they display an unusually
large dispersion in certain key equilibrium helical parame-
ters (e.g., twist), arising from different tetramer environ-
ments. Focusing on the different tetramer environments,
we can see that the d(CpG) steps are peculiar in presenting
bimodal distributions of some parameters (e.g., twist; see
Fig. S4), which confirms previous ABC findings (27).
Such bimodality is not an artifact that arises from incom-
plete sampling, because it is also present in multi-micro-
second trajectories (43), and suggests that the d(CpG) step
is specially flexible, as confirmed by a stiffness analysis
(Fig. 2). It is worth noting that the large deformability in
twist and roll, combined with large roll values, suggests
that protein-induced curvature may be favored in DNA
with CpG steps. Fig. S5 shows that CpG, despite the neigh-
boring basepair, is more curved than most basepair steps
(only TA and CA are comparable) and is directed preferen-
tially toward the major groove.

FIGURE 1 Average helical parameters (transla-

tions in angstroms and rotations in degrees)

derived from MD simulations of the usual 10 dinu-

cleotides plus d(MeCpG; referred to as MG in the

figure). The black dots correspond to control simu-

lations (those performed for this work and those

obtained from the ABC database (27)) for each

central basepair step representing the different

tetramer environments; notice the slight displace-

ment from the vertical to avoid stacking of data.

Blue dots stand for d(CpG) and d(GpC) steps

when embedded in a poly d(CpG) track. Green

dots refer to neighboringmethylated steps (XpMeC):

d(ApMeC), d(TpMeC)¼d(GpA), d(CpMeC), and

d(GpMeC). Finally, red dots stand for d(MeCpG)

and d(GpMeC) in the context of a poly d(CpG) track.
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2142 Pérez et al.



One might expect the unique physical properties of
d(CpG) steps to be amplified in long d(CpG)n tracks (i.e.,
CpG islands). Surprisingly, this is not the case, and the
global geometrical properties of long d(CpG) segments
are different from those expected by extrapolating the indi-
vidual characteristics of the d(CpG) steps (Fig. S1). Thus,
the high flexibility of the d(CpG) steps suggests that poly
d(CpG) should be extremely flexible. Conversely, the
d(CpG)9 segment studied here is hardly distinguishable
from other 18-mer duplexes in terms of global unwinding
and isotropic bending. This is hardly surprising when one
considers the differences between an individual d(CpG)
step and a poly d(CpG). The former has the properties of
an individual d(CpG) step, whereas the d(CpG)9 segment
has properties due to the alternation of d(CpG) and
d(GpC) steps. Thus, the lower flexibility of d(GpC) steps
(Fig. S1) makes the whole sequence overall stiffer than
a simple extrapolation of d(CpG) properties. Furthermore,
whereas the large roll of individual d(CpG) steps would
imply a strong curvature of the entire oligonucleotide, the
d(CpG)9 curvature is actually very moderate due to the
low roll values of d(GpC) steps. In conclusion, the proper-

ties of long d(CpG) segments are distinct from the extrapo-
lation of properties of isolated d(CpG) steps, warning
against the use of oversimplified rules of DNA flexibility.

Effect of CpG methylation

Early structural experiments suggested that cytosine meth-
ylation (Fig. S5) might induce helical transitions from B-
to Z-DNA (44). However, a secondary structure analysis
of CpG methylated oligonucleotides by circular dichroism
spectroscopy (Supporting Material and Fig. S6) revealed
that the transition only occurred at nonphysiological salt
concentrations (from 1 to 2 M NaCl). This evidence is in
agreement with our MD results and previously reported
Fourier transform infrared (FTIR) spectroscopy data (45),
demonstrating that in vivo DNA remains in the B-form
upon methylation, and accordingly, the transition to the
Z-form is not the underlying determinant for the physiolog-
ical role of CpG methylation.

The results of the MD simulations suggest that when
methylated, d(CpG) steps increase their average roll value
and reduce their twist (Fig. 1), leading to an increase in local

FIGURE 2 Average stiffness helical parameters

(translations in kcal/mol Å2 and rotations in kcal/

mol deg2) derived from MD simulations of the

usual 10 dinucleotides plus d(MeCpG; referred to

as MG in the figure). Same notation as in Fig. 1.
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curvature. Furthermore, methylation makes d(CpG) steps
stiffer, especially in terms of roll and tilt deformations: the
MeCpG step has larger tilt and roll force constants on
average than the CpG step (MG and CG, respectively, in
Fig. 2). Methylation also alters the geometric properties of
the basepair step previous to the d(CpG) site, here denoted
as d(XpC), where X ¼ A, C, G, or T (Figs. 1 and 2). In
canonical DNA, d(XpC) steps tend to compensate for the
geometry and relative stiffness of d(CpG) in twist, tilt, and
roll. However, upon methylation, we observed an increase
of force constants for rotational parameters in both the
MeCpG and d(XpMeC) steps (green dots in Fig. 2). Hence,
the additive effect of methylation leads to significant alter-

ations in the global physical properties of DNA, especially
for CpG islands (Figs. 1 and 2, and Fig. S1).

The higher stiffness of the d(MeCpG) steps should lead to
a decrease in the DNA circularization efficiency, which must
be especially visible for the smallest circles. Indeed, Monte
Carlo calculations using the MD-derived stiffness parameters
(see Materials and Methods, and Supporting Material) sug-
gested that circularization of 126- to 189-bp-long methylated
oligos (oneMeCpG every 21 bp) ismore difficult than circular-
ization of unmethylated ones (with a relative J-factor ofJJ
0.05–0.2). This result was confirmed by circularization exper-
iments on the same sequence with a relative J-factor of ~0.5JJ
(see Fig. 3, Materials andMethods, and SupportingMaterial).

FIGURE 3 Overview of circularization assays.

(A(( ) Schematic diagram of the underlying principle

of circularization assays. A DNA oligonucleotide

is first annealed to form duplexes and subsequently

is multimerized-circularized by a ligation reaction.

Under favorable ligation conditions, DNA forms

circles as short as allowed by the geometry and

flexibility of the DNA. Only circularized DNA is

resistant to an exonuclease digestion; linear multi-

mers will be degraded. (B) AFM images of ligation

products for 15-bp nonfavoring (left) and 21-bp

favoring (right) circularization oligonucleotides;

circle size estimations are highlighted in white.

(C) 2D polyacrylamide native gels showing

different migrations of linear (L) and circular (C)

DNA species (which can be either covalently

closed (cC) or nicked open (oC)) for nonmethy-

lated and MeC oligomers of 21 bp, respectively.

Linear DNA molecules are positioned on the lower

diagonal, and circular DNA molecules are posi-

tioned on the upper diagonal. (D) The circulariza-

tion efficiency is expressed as the ratio between C

and L molecules of the same size.
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Potential impact on chromatin structure

The sequence-dependent physical properties of DNA play
a crucial role in determining nucleosome positioning (46–
52) and thus are instrumental in genome regulation
(53,54). An analysis of nucleosome distribution in Saccha-
romyces cerevisiae (55,56) revealed that d(CpG)s are en-
riched in nucleosome-bound regions but depleted in
internucleosomal segments, supporting the idea that
d(CpG) steps are easily fitted into the nucleosome structure.
Protein-DNA interactions are governed by direct and indi-
rect readouts. The former arises from protein-DNA direct
interactions, whereas the latter is based on the ability of
a DNA sequence to deform into a conformation that makes
the interaction happen. Without underestimating the impor-
tance of direct readout mechanisms in nucleosome binding,
we note that indirect readout models seem to capture well
the global positioning profile of nucleosomes (41). Thus,
changes in the physical properties of the DNA fiber related
to methylation should have a direct impact on nucleosome
affinity and positioning. Our models prompted us to hypoth-
esize that in the absence of external factors (e.g., MBD
proteins or chromatin remodelers), the increased stiffness
due to d(CpG) methylation leads to a higher deformation
energy required to wrap DNA around a nucleosome

(Fig. 5). We tested this hypothesis by conducting in vitro
nucleosome reconstitution experiments (see Materials and
Methods, and Supporting Material) with normal and meth-
ylated DNAs. The results confirm that the d(MeCpG) DNA
has a lower ability to form nucleosomes than the nonmethy-
lated sequence (Fig. 4).

Interestingly, nucleosome formation was further
decreased when all cytosines in the DNA were methylated,
which confirms that a reduced flexibility is mainly respon-
sible for the lower affinity of methylated DNA for the
histones. Other nonmammalian organisms that have alterna-
tive cytosine methylation patterns besides the methylation of
CpG steps could use this strategy for gene regulation. Tillo
and Hughes (57) established that increasing CþG contents
correlate well with higher nucleosome formation. Therefore,
it is not surprising that a mechanism in which more cytosines
are methylated would further rigidify the sequence, further
changing the nucleosome positioning preferences (57).

DISCUSSION

d(CpG) steps are statistically underrepresented in the
genome, but they appear concentrated in regulatory regions,

FIGURE 4 In vitro nucleosome core particle reconstitution. Results of

gel mobility shift assays of nucleosomes reconstituted in vitro with

a 147-bp 601.2 DNA fragment containing either C or MeC at different

histone octamer concentrations are shown. The upper bands correspond

to histone core-bound DNA, and lower bands correspond to unbound (or

free) DNA. Mk: DNA ladder for size band estimation. (A(( ) Radiolabeled

DNA bands. (B) DNA bands stained with SyBr Safe (Invitrogen) and visu-

alized by ultraviolet light. (C) Histograms displaying the percentage of

in vitro assembled nucleosomes using the same sequence in different meth-

ylation conditions coming from triplicate experiments.

FIGURE 5 Impact of methylation on nucleosome positioning. (A(( ) The

distribution of predicted energies (per base step) for 147-bp-long random

DNAs in normal (blue histogram) and methylated (orange histogram)

forms, respectively. The curves correspond to the predicted energy (per

base step) when random oligos contain a poly d(CpG) track at the dyad,

in normal (red) and methylated (magenta) forms. (B) The nucleosome

distribution surrounding the TSSs of yeast genes determined from MNase

digestion experiments (black line), compared with the predicted distortion

energy to wrap a nucleosome in those sites when genomic DNA is normal

(blue line) or methylated (orange line). All values were normalized to facil-

itate the interpretation of the plots. Nucleosome positions �1, þ1, and þ2

are indicated by red boxes for clarity.
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which suggests that d(CpG) steps provide the suitable phys-
ical properties that enable the DNA to efficiently interact
with regulatory proteins (58,59) and help define the correct
nucleosome positioning. Indeed, our MD results suggest
that isolated d(CpG) steps are curved (see Fig. S5) and
particularly flexible, making d(CpG) steps appropriate for
those regions in which DNA needs to be locally distorted
to facilitate protein binding, in agreement with early NMR
measures (60). This hypothesis is supported by an analysis
of whole-genome nucleosome positioning in yeast, which
revealed a d(CpG) step depletion in internucleosomal
segments (41,55,56).

Mesoscopic calculations (Fig. 5 A) indicate that a
d(CpG)5 segment located at the dyad axis may favor nucle-
osome formation, and hence very long d(CpG) tracks (CpG
islands) are very likely to assemble into nucleosomes.
Nucleosomes can easily move along the d(CpG) track,
presumably leading to a nucleosome-depleted region at
the external borders of the island, and thereby imprinting
a distinct nucleosome array organization that would define
the accessibility to regulatory regions downstream of the
CpG islands, where many promoters are located. This also
accords with the fact that high CþG content correlates
with nucleosome positioning (57)

Methylation increases the curvature of d(CpG) steps
(Fig. S5), although this local geometric effect tends to be
compensated for by neighboring steps. In fact, all tested
18-mer methylated oligos (except CpG islands) were less
curved and less flexible than their unmethylated counter-
parts. On the other hand, as previously suggested (61,62),
methylation increases d(CpG) stiffness, and this effect prop-
agates to neighboring steps, leading to a global increase in
the rigidity of DNA. Our results suggest that this effect
alone explains (within the indirect readout model) the
limited ability of methylated DNA to interact with certain
proteins, such as transcription factors (63–65). Our
in silico simulations and in vitro nucleosome reconstitution
experiments showed that methylation reduces DNA affinity
for nucleosomes, probably due to the increased rigidity of
the DNA fiber. Our results are in full agreement with
previous findings (66,67), with recent data about the anticor-
relation between nucleosome formation and methylation
(68), and with physical intuition that suggests that a more
flexible fiber should wrap more easily than a rigid one.
Additionally, the rigidifying effect of MeCpG is also
observed in recent fluorescence resonance energy transfer
(FRET)-derived data (69,70) showing that methylating
nucleosome-bound DNA results in nucleosome compaction
and rigidity. Taken together, these results indicate that DNA
methylation may regulate nucleosome dynamics by
increasing the rigidity of DNA either before or during nucle-
osome assembly.

Our combined theoretical and experimental results
demonstrate that methylation decreases nucleosome forma-
tion. Nucleosome depletion is usually considered as a signal

of gene activity (71,72). At the same time, gene activity
correlates with low levels of methylation (73). We postulate
that the presence of almost 105 MeCpG steps present in the
genome could significantly modify the nucleosome posi-
tioning landscape. This hypothesis would explain how the
gene expression pattern can change while the number of
nucleosomes (but not positions) is kept constant in either
methylated or canonical genomes. Hence, we analyzed the
nucleosome organization around TSSs on the unmethylated
yeast genome and subsequently compared the in silico
effects of methylation on nucleosome positioning (Fig. 5
B). TSSs are typically characterized by a nucleosome-
depleted region and well-positioned �1, þ1, and þ2 nucle-
osomes (55,74). As expected, these positions are clearly
marked in the energy profiles: regions with high deforma-
tion energy signal nucleosome-depleted areas and vice versa
(Fig. 5). These profiles support recent claims about partic-
ular nucleosome positioning sites (signaled by large
in vitro propensities for nucleosome assembly) anchoring
the formation of nucleosomal arrays in vivo (75,76). Meth-
ylation of d(CpG) steps modifies the deformation energy
profile associated with nucleosome wrapping around the
TSS, which ultimately may be reflected by a change in the
nucleosome array (Fig. 5 B; note that this does not neces-
sarily make the nucleosomes more diffuse) and, accord-
ingly, in gene expression (77). In particular, it seems that
upon methylation, the nucleosome-free region is less
defined and the nucleosome �1 is moved downstream.
Furthermore, our calculations suggest that when CpG
islands are methylated, nucleosomes are concentrated at
the CpG island edges, leading to a completely different
configuration of the nucleosome array around the TSS and
consequently to a change in gene activity. Hence, we can
partially rationalize the striking effect of methylated CpG
islands on the activity of several genes, particularly those
involved in cancer (78), by considering the highly unfavor-
able impact that methylation has on the ability of poly CpG
tracks to wrap around nucleosomes (Fig. 5 A). Further work
is required to shed more light on this interesting hypothesis.

Taken together, our studies show how an apparently
minor covalent change such as methylation can alter the
physical properties of DNA, and how such a change can
modify the ability of DNA to organize the chromatin fiber,
which may be reflected by significant alterations in gene
regulation, even in the absence of specific MBDs.

CONCLUSIONS

In summary, simple physical properties of DNA (described
from calculations based on first principles) can provide
a rationale for the seemingly chaotic diversity of gene regu-
latory signals in developed organisms, particularly epige-
netic signatures such as cytosine methylation. Our results
support the hypothesis that physical properties define a basal
regulatory code that is superposed onto more elaborated
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mechanisms involving the action of specific proteins when
fine-tuning of gene function is required. Furthermore, our
findings suggest that simply by varying the physical proper-
ties of some distant regions to a particular gene while
keeping the specific protein-binding boxes unaltered, we
may be able to modulate that gene’s biological functionality.
This raises interesting possibilities in the emerging field of
synthetic biology. From the results of this study, it follows
that methylated DNA is not as likely to form nucleosomes.
However, the complete picture is even more complex when
one considers that DNMTs have a greater preference to
target nucleosome-bound DNA, slightly enriching it (1%)
in MeCpG steps (79).

SUPPORTING MATERIAL

Supplementary materials and methods, seven figures, a table, and refer-

ences are available at http://www.biophysj.org/biophysj/supplemental/
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28. Pérez, A., I. Marchán, ., M. Orozco. 2007. Refinement of the
AMBER force field for nucleic acids: improving the description of
a/g conformers. Biophys. J. 92:3817–3829.

29. Olson, W. K., A. A. Gorin, ., V. B. Zhurkin. 1998. DNA sequence-
dependent deformability deduced from protein-DNA crystal
complexes. Proc. Natl. Acad. Sci. USA. 95:11163–11168.

30. Lankas, F., J. Sponer, ., T. E. Cheatham, 3rd. 2003. DNA basepair
step deformability inferred from molecular dynamics simulations.
Biophys. J. 85:2872–2883.

31. Morozov, A. V., K. Fortney, ., E. D. Siggia. 2009. Using DNA
mechanics to predict in vitro nucleosome positions and formation ener-
gies. Nucleic Acids Res. 37:4707–4722.
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40. Thåström, A., P. T. Lowary, ., J. Widom. 1999. Sequence motifs and
free energies of selected natural and non-natural nucleosome posi-
tioning DNA sequences. J. Mol. Biol. 288:213–229.

41. Deniz, O., O. Flores,., M. Orozco. 2011. Physical properties of naked
DNA influence nucleosome positioning and correlate with transcription
start and termination sites in yeast. BMC Genomics. 12:489.

42. Anderson, J. D., and J. Widom. 2000. Sequence and position-depen-
dence of the equilibrium accessibility of nucleosomal DNA target sites.
J. Mol. Biol. 296:979–987.
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Membrane Tension, Myosin Force, and Actin Turnover Maintain Actin
Treadmill in the Nerve Growth Cone

Erin M. Craig,† David Van Goor,‡ Paul Forscher,‡ and Alex Mogilner†*
†Department of Neurobiology, Physiology and Behavior, and Department of Mathematics, University of California, Davis, California;
and ‡Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut

ABSTRACT A growth cone is a motile structure at the tips of axons that is driven by the actin network and guides axon exten-
sion. Low actin adhesion to the substrate creates a stationary actin treadmill that allows leading-edge protrusion when adhesion
increases in response to guidance cues. We use experimental measurements in the Aplysia bag growth cone to develop and
constrain a simple mechanical model of the actin treadmill. We show that actin retrograde flow is primarily generated by myosin
contractile forces, but when myosin is inhibited, leading-edge membrane tension increases and drives the flow. By comparing
predictions of the model with previous experimental measurements, we demonstrate that lamellipodial and filopodial filament
breaking contribute equally to the resistance to the flow. The fully constrained model clarifies the role of actin turnover in the
mechanical balance driving the actin treadmill and reproduces the recent experimental observation that inhibition of actin depo-
lymerization causes retrograde flow to slow exponentially with time. We estimate forces in the actin treadmill, and we demon-
strate that measured G-actin distributions are consistent with the existence of a forward-directed fluid flow that transports G-actin
to the leading edge.

INTRODUCTION

Cell migration is a ubiquitous process underlying morpho-
genesis, wound healing, and cancer, among other biological
phenomena (1). Leading-edge protrusion on flat surfaces—
the first step in cell crawling—relies on continuous remod-
eling of a cytoskeletal structure called the lamellipodium
(2), a broad and flat network of actin filaments. The lamel-
lipodium is several microns in width, but only ~0.1–0.2 mm
high (3). The actin network, a polarized dendritic array
(Fig. 1 A), grows near the lamellipodial leading edge (4).
Combined with adhesion to the substrate, this growth moves
the leading edge forward in response to guidance cues.
Meanwhile, the actin network disassembles throughout the
lamellipodium (4), and actin monomer diffusion recycles
the monomers to the leading edge (4). Diffusive transport
can be assisted by a forward-directed flow of the fluid
fraction of the cytoplasm (5). The front-to-rear length of
the dynamic lamellipodial network is governed by the
dynamics of this biochemical cycle in which actin is being
continuously converted from monomer to polymer and
back again (6).

Growing actin filaments push forward on the membrane
enveloping the leading edge, resulting in membrane tension
(7). The membrane tension slows actin polymerization by
pushing back on growing filaments (8–10).When adhesion
to the substrate is weak or absent, membrane tension
pushing back on the filaments also generates retrograde
flow of the actin network (11–14). In some cells (including
keratocytes and nerve growth cones), myosin II (which we
refer to simply as myosin) also contributes to retrograde

flow in the lamellipodium by contracting the actin network
and disassembling it at the rear (11,15–17). This retrograde
flow, balanced by leading-edge actin polymerization (4) and
depolymerization throughout the network (18), creates a
stationary lamellipodial treadmill. According to the adhe-
sion clutch hypothesis (19–21), increased adhesion attenu-
ates the retrograde flow, so that the leading-edge actin
polymerization is not cancelled by the flow anymore, but
rather produces net protrusion and resulting cell motility.

Mechanical components of the actin treadmill have been
identified and many of their interactions characterized (22).
This lays the groundwork for the challenging task of devel-
oping a quantitative understanding of the relative contribu-
tions of myosin, leading-edge tension, and actin turnover
to the balance of forces underlying the treadmill. We seek
to address this challenge in the context of the nerve growth
cone, a sensory motile structure that guides axon growth
(23). A growth cone is composed of two regions (22), a
central (C) domain filled with organelles and microtubules
and a peripheral (P) domain (Fig. 1 A). The P domain is
composed of a fine veil network of actin filaments inter-
spersed with tightly packed parallel actin bundles called
filopodia (24) (Fig. 1 A). The P-domain actin network
undergoes dynamic treadmilling, similar to the lamellipo-
dial region of other motile cells. The boundary between
the peripheral and central domains of the growth cone is
known as the transition (T) zone (Fig. 1 A). Retrograde
flow of veil and filopodial actin in the P domain slows
dramatically when it reaches the T zone (25), perhaps in
part because the microtubules and vesicles in the central
domain create a physical barrier to continued flow. Although
uniform veil F-actin depolymerization throughout the P
domain produces a lower network density at the T zone
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than at the leading edge (26), the remaining actin network
must be disassembled at the T zone to allow recycling of
actin and continuous treadmilling.

Here, we develop a quantitative mechanical model of the
actin treadmill in the P domain of nerve growth cones. Aply-
sia bag cell neurons are a convenientmodel system for under-
standing the mechanics of the steady-state lamellipodial
treadmill, because when they are plated on poly-L-lysine-
coated coverslips (17), adhesion of actin to the substrate is
very weak, making the cones stationary with a rapidly tread-
milling P domain. It is useful to analyze a systemwith rapidly
treadmilling actin and negligible adhesion, because mechan-
ical properties of adhesions are often complex (14,27) and the
treadmill has to be understood and calibrated before attempt-
ing to quantify the adhesion clutch coupled with actin
dynamics. Another advantage of this model system is the
abundance of quantitative data (26,28,29), which offer the
rare opportunity not only to fully constrain the model using
part of the data but also to test the model predictions against
the rest of the data within a single experimental system. The
actin network components and characteristics are conserved
across various cell types (2), and we expect that a growth
cone model will also be relevant to other types of cells.
Previous models of growth cone motility have focused
primarily on chemical guidance (30–33), and one early
model explored the mechanism for traction force generation
(34). In contrast, the model presented here is designed to
investigate the mechanical properties of the growth-cone
lamellipodial treadmill. We model the P-domain actin array
and use recent experiments in the growth cone to constrain
the model and determine the balance of forces, movements,
and actin turnover in the P domain.

A key outcome of the model is that the actin network
rapidly adjusts to mechanical perturbations by transitioning
into a new steady state with different P-domain width and
retrograde flow speed, an adaptability that may contribute
to robust growth-cone motility in varying biological condi-
tions. We also determine numerical values for the myosin
contractile stress and membrane tension force driving retro-
grade flow, and suggest that veil and filopodial filament
breaking contribute equally to the resistance to retrograde
flow. The model predicts exponential slowing of retrograde
flow if depolymerization is inhibited, in good numerical
agreement with experimental measurements (26). Finally,
we use measurements of G-actin spatial profiles in Van
Goor et al. (26) to estimate the forward-directed fluid flow
in the P domain, and we find that it is on the same order
of magnitude as actin retrograde flow.

MATERIALS AND METHODS

One-dimensional model of the actin treadmill

We consider the P-domain actin network, which assembles at the leading

edge and disassembles at a constant rate while undergoing retrograde

flow. Actin retrograde flow in an Aplysia bag growth cone is in the radial

A

B

FIGURE 1 Actin treadmill in the nerve growth cone. (A(( ) Upper, Electron

microscopy image of an Aplysia bag cell nerve growth cone, obtained as

described in Schaefer et al. (40). (Inset) Higher magnification of P domain

(larger box), showing the dendritic network of veil filaments interspersed

with filopodial bundles. The central (C) domain, transition (T) zone, and

peripheral (P) domain are labeled. Scale bar, 3.5 mm. Lower, Higher magni-

tude of quasi-1D slice of P domain (smaller box in upper image), to illustrate

a representative region of interest for the 1Dmodel illustrated inB. (B) Upper,

Schematic of the actin treadmill components: actinfilaments (center), leadingr

edge (right), andT zone andmyosin (left). The actin network undergoes retro-

grade flow (green arrow). Lower, balance of forces in the 1D model for the

P-domain actin network. The coordinate x represents the distance from the

boundary between the T zone and P domain, with x ¼ L corresponding to

the leading edge. The active forces driving retrograde flow are membrane

tension, fTff , andmyosin contraction,TT fmff (arrows pointing to the left). The effec-

tive drag force opposing retrograde flow (arrow pointing to the right) arises

from the necessity to disassemble the actin network at the T zone.
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direction (25), and considering a segment of the P domain a few microns

wide allows a one-dimensional (1D) description (Fig. 1 A). We assume

that the flow is driven by myosin motors pulling within the T zone and

membrane tension pushing from the leading edge and that it is resisted

by an effective drag force that depends on the density of filaments at the

T zone. The P-domain width and retrograde flow speed are dynamic vari-

ables that depend on the mechanical properties of the growth cone and

the balance of forces on the actin network (Fig. 1 B).

Below, we outline the biological assumptions and develop the mathemat-

ical details of the model.

Kinematics

The speed of protrusion in the lab coordinate system, vcell, is

vcell ¼ vg � vr; (1)

where vg is the actin growth rate and vr is the retrograde flow rate. In the

stationary P domain, vcell ¼ 0 and vg ¼ vr. The model illustrated in Fig. 1 B

is based on the following force-speed relations.

Actin growth rate

A few recent studies have reported direct measurements of membrane

tension in epithelial (35) and neutrophil (36) motile cells in the tens of

pN range, as well as a lower tension in nerve growth cones (37), and

have suggested that this tension slows actin growth. We assume that the

leading-edge membrane is under tension and that the tension force/mm of

the leading edge, fT, reduces the polymerization speed according to the

force-velocity relation

vg ¼
8<: v0

�
1�

�
fT
fs

�u�
if fT<fs;

0 if fTRfs;

; (2)

where fs is the stall force/mm and v0 is the free polymerization speed.

Measurements (8,10) and theory (9) have confirmed the validity of Eq. 2

and have yielded the parameter u > 1, such that the velocity is insensitive

to tension at low loads. We assume that the membrane tension is propor-

tional to the P-domain width rather than to the whole growth cone area,

based on the observations discussed in detail in the Supporting Material.

Retrograde flow rate

Our main hypothesis is that resistance to buckling and breaking filaments in

the T zone creates a drag opposing the myosin pulling, fm, and membrane

pushing, fT, forces on the network. The balance of these three forces deter-

mines the retrograde flow. We suggest that the retrograde flow speed is

determined by the force balance (Fig. 1 B),

fm þ fT ¼ xbreakvr: (3)

Four assumptions underlie Eq. 3: 1), The veil-filopodia network deforms

very little, so that no resistance to the retrograde flow comes from compres-

sion or shear in the front few microns of the network, and the forces pulling

the network at the rear and pushing it at the front simply add. Data and

previous modeling indicate that there is a small amount of compression

and shear in the lamellipodium of other cells (38,39). However, there is

little gradient in the symmetric retrograde flow speed from the growth

cone leading edge to the T zone (26), suggesting that compression and shear

can be neglected. 2), The adhesion force is negligible, which allows us to

isolate the dynamics of the stationary treadmill from potentially compli-

cated adhesion dynamics. 3), We treat myosin contractility as a constant

external force, fm (per unit edge length), acting on the actin network in

the P domain, based on the assumption (supported by the observation in

Medeiros et al. (28)) that myosin is localized in the T zone and pulls the

actin network inward. 4), Electron microscopy shows that the filaments

and bundles bend, buckle, and break in the T zone (40) (Fig. 1 A), and

we assume that this breaking force resisting the network flow is viscous-

like in proportion to the flow rate (see Supporting Material for physical

reasoning). The parameter xbreak characterizes the resistance to flow associ-

ated with breaking actin filaments at the T zone.

We assume, and justify below by comparison with experiment, that xbreak
is proportional to the actin-filament density remaining at the T zone after

partial network disassembly in the P domain, and that veil and filopodial

filaments contribute equally to the force, which leads to the equation

xbreak ¼ Fbreak

�
af þ alðx ¼ 0; tÞ�: (4)

Here the parameter Fbreak is proportional to the breaking force/filament,

fbreak, and af and al are the filopodial and veil filament densities, respec-

tively, at the boundary between the P domain and the T zone.

Actin disassembly

Based on experimental data (26), we assume a constant net rate, g, of the

veil filament network disassembly, which yields the following equation

for the veil actin density:

val
vt

¼ �gal þ vr
val
vx

: (5)

We do not model the underlying molecular mechanism of network disas-

sembly here. The steady-state veil actin distribution for the stationary tread-

mill is then

alðxÞ ¼ a0 exp

�
� gðL� xÞ

vr

�
: (6)

Here, x is the anterior-posterior coordinate; x ¼ 0 refers to the T zone and

x ¼ L corresponds to the leading edge of the P domain (Fig. 1 B). In exper-

iments, the observed distance between the T zone and the leading edge, L,

depends on mechanical properties of the actin treadmill components; for

example, reduced myosin density inhibits actin disassembly, producing

a larger P domain (28). Therefore, L is a dynamic variable of our model.

Parameter a0 characterizes a constant density of the veil actin filaments at

the leading edge (number/mm). Using the same formulation for the filopo-

dial actin density, afil(x), the total actin density in the P domain is given by

alðxÞ þ afilðxÞ z a0 exp

�
� gðL� xÞ

vr

�
þ af ; (7)

where af is the leading-edge filopodial density. Filopodial bundles have

significantly slower turnover rates (estimated half-life ~25 min) than veil

F-actin (0.5–3 min) (41). The observed actin flow in the growth cone is

such that a filament travels from the front to the T zone in just 1–3 min, al-

lowing us to approximate the actin density along filopodia as constant from

front to rear. This means that filopodia will not turn over significantly and

must be recycled by other means, most likely by being mechanically

broken.

G-actin spatial distribution

The G-actin concentration can be found from equations describing the

balance of F- and G-actin, governed by disassembly and transport

processes. The equation for the veil (lamellipodial) F-actin concentration,

Fl, has the same form as Eq. 5, vFl=vt ¼ �gFl þ vrvFl=vx, and has the

same solution as Eq. 6 (al and Fl simply have different dimensions). The

total F-actin density distribution in the steady state is then given by

FðxÞ ¼ FlðxÞ þ FfilðxÞzF0 expð�gðL� xÞ=vrÞ. The equation for the G-

actin concentration, G, has the form

vG

vt
¼ gFlðxÞ � vf

vG

vx
þ D

v2G

vx2
: (8)
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Here, the first term on the right-hand side corresponds to the net local

source of G-actin due to lamellipodial F-actin disassembly, and we neglect

the contribution of the filopodia. The second term describes the hypothet-

ical flow of the fluid fraction of cytoplasm forward with speed vfv . Such

flow can be generated by myosin contraction at the rear and membrane

permeability at the front, as observed in Keren et al. (5). The third

term describes actin monomer diffusion. The boundary conditions at the

leading edge (x ¼ L) are that there is a finite G-actin concentration there,

G0, necessary to maintain the protrusion with the observed speed, and

that the outflux of the G-actin is equal to the influx of the F-actin:�
vfv G� D

vG

vx

�����������
x¼L

¼ vrF0 (all actin monomers assembling onto the fila-

ment tips at the front become F-actin), similar to Lan and Papoian (42).

In this simple model, we have omitted separation of the G-actin pool into

fractions characterized by binding with various proteins. More detailed

models have been investigated (7,18), but qualitatively, the result described

below regarding the gradient of the total G-actin is insensitive to these

details. Model equations were solved as described in the Supporting

Material.

Experimental constraints on the model

The actin treadmill model described by Eqs. 1–7 can be fully constrained by

comparing model predictions with results from a set of experiments with

the Aplysia bag nerve growth cone reported in three studies (26,28,29) in

which P-domain width and retrograde flow speed were measured under

several drug-treatment conditions (Fig. 2 and Table S1): 1), control condi-

tions; 2), actin polymerization inhibited by cytochalasin B; 3), filopodia

removed by treatment with low cytochalasin B; 4), myosin inhibited by

blebbistatinþ actin polymerization inhibited by cytochalasin B; 5), myosin

contractile forces inhibited by blebbistatin; 6), actin depolymerization

inhibited by jasplakinolide; and 7), actin depolymerization inhibited by

jasplakinolide in cones pretreated with blebbistatin. We discuss the respec-

tive experimental results in the Supporting Material. Note that all of the

experiments we consider were performed on the same experimental system,

allowing us to constrain the model in a self-consistent way.

RESULTS

Calibrating the model: roles of filopodia, myosin
force, and membrane tension

Veil and filopodial filament breaking provides mechanical
resistance to retrograde flow

A major assumption of the model is that there is a certain
breaking force per actin filament at the T zone, and that
this breaking force is the same for veil and filopodial fila-
ments. We further assume that the effective drag force
opposing retrograde actin flow is given by the amount of
force required to break all the filaments. We can test these
assumptions by comparing the predictions of the model
with experimental measurements of the retrograde flow
and P-domain width in the control case and when filopodia
are absent (29). When filopodia were removed by treating
the growth cone with low levels of cytochalasin B, the
velocity of retrograde flow was unchanged from the control
case, but the P-domain width decreased. Assuming that the
myosin force, fmff , does not change after filopodia removal,
we can infer that the effective drag, xbreak ¼ fmff /vmm r, is also
unchanged. In other words, the location of the transition
zone is determined by the distance from the leading edge
at which F-actin density is low enough for myosin contrac-
tile forces to effectively break down the network; when filo-
podia are removed and no longer contribute to the F-actin
density distribution, the P domain narrows such that the
F-actin density at the T zone remains the same for a fixed
myosin density. Setting the expression for xbreak (Eqs. 4
and 7) under control conditions equal to the expression for

A

C

E

B

D

F

FIGURE 2 Schematics of growth-cone experi-

ments used to constrain and test the model. (A(( )

Under control conditions, myosin pulling is

balanced by the actin breaking force. (B) When

the leading-edge polymerization is inhibited by

cytochalasin B, the force balance does not change.

(C) When filopodia are removed with a low

concentration of cytochalasin B, the force balance

and flow do not change but the P domain shortens.

(D) Inhibition of both polymerization (by cytocha-

lasin B) and myosin (by blebbistatin) lowers both

pulling and resistive forces and actin flow. (E)

When myosin is inhibited by blebbistatin, the P

domain widens and the remaining actin flow is

driven by a combination of leading-edge tension

and weakened myosin contractile force. (F) Inhibi-FF

tion of actin depolymerization by jasplakinolide

increases the resistance of the actin network and

slows the actin flow.
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the case without filopodia, we establish a relationship
between the leading-edge veil and filopodial densities:

af
a0

¼ exp

��gLnofil

vr

�
� exp

��gL

vr

�
; (9)

where L, vr, and g are the control values for the P domain
width, retrograde flow, and veil depolymerization rate, and
Lnofil is the P-domain width after filopodial removal
(Fig. S1 A). Measured values for these parameters (Table
S2) allow us to estimate the right-hand side of Eq. 9,
yielding af/a0 z 0.08.

This prediction is consistent with experimental estimates
of veil and filopodial actin filament densities: EM images of
a growth-cone P domain show ~20 filopodial bundles for
every 30 mm in width along the leading edge (43). If each
filopodial bundle is comprised of z25 individual filaments
(44), the filopodial filament density is af z 15/mm. Veil fila-
ment density is similar to the lamellipodial density of barbed
ends at the leading edge of epithelial cells, which is of the
order of a0 z 200/mm (3,7), so af/a0 z 0.075. The consis-
tency between these measurements and the prediction of
Eq. 9 supports the model assumption that filopodial and
veil actin contribute equally to retrograde flow resistance.

The myosin contractile force, fm, exerted on the network
is equal to the force/filament, fbreak, times the actin-filament
density at the transition domain. Using experimentally
measured values for P-domain width and retrograde flow
speed (Table S1) and the leading-edge veil and filopodial
densities (Table S2), and a theoretical estimate for fbreak
(Table S2), we calculate fm ¼ fbreak(af þ a0exp(�gL/vr)) z
1 nN/mm. A single myosin motor domain exerts forces on
the order of 1 pN, suggesting that there are ~1000 motors/mm
exerting contractile force in the P domain, consistent with
other cell data (45,46). According to our assumption that
buckled filaments in the T zone exert an equal and opposite
effective drag force on the P-domain network, the effective
drag coefficient opposing retrograde flow under control
conditions is xbreak ¼ fm/vr z 170 pN � min/mm2.

P-domain width adapts to mechanical perturbations
to maintain a balance of forces

When leading-edge polymerization and myosin forces are
both inhibited (after treating growth cones with cytochalasin
B and blebbistatin, the P-domain leading edge retreats from
the membrane, nullifying potential membrane tension), the
remaining retrograde flow is z20% of the control value
(28). This observation suggests that the residual myosin
forces under blebbistatin treatment are z20% of fm under
control conditions, so f bm ¼ 0:2 fm. When growth cones are
treated with blebbistatin alone, inhibiting myosin without
interfering with actin polymerization, the retrograde flow,
vbr , is z50% of the control value and the P-domain width
expands by z80% relative to control (28). In this case,
the remaining retrograde flow is higher than what would

be predicted if retrograde flow were still driven by myosin
forces alone. The additional retrograde flow can be ex-
plained by two factors: reduced resistance to flow, because
a larger P-domain width decreases the actin density at the
boundary between the P domain and the T zone (Eq. 7),
and hypothetical leading-edge tension that arises due to
the expansion of the P-domain width. Indeed, cell protrusion
requires membrane delivery to the front against a tension
gradient (47) and is associated with increasing membrane
tension (35). Using the P-domain width measurement
Lb z 13 mm under blebbistatin conditions (28), we can esti-
mate the effective drag coefficient for blebbistatin-treated

cells, xbbreak ¼ xbreakðaf þ alðLb; vbr ÞÞ=ðaf þ alðL; vrÞÞ (Eqs.

4 and 7), and find that the leading-edge tension, f bT , in this

case is f bT ¼ xbbreakv
b
r � f bmz90 pN=mm. Using the steady-

state condition for the blebbistatin-treated cells ðvbg ¼
vbr ¼ 0:5v0Þ, we can determine the actin-network stall force,

fs. According to the load-velocity relationship for actin-

network polymerization (Eq. 2), fs ¼ f bT =ð1� vbg=v0Þ1=u ¼
f bT =0:5

1=uz100 pN=mm (Fig. S1 B), where we have used

u ¼ 6 based on experimental measurements (10). This stall
force is lower than that measured for motile fish keratocyte
cells (~400 pN/mm) (8), but the order of magnitude is the
same.

These results illustrate a key feature of the actin-network
treadmill: the steady-state P-domain width adapts to main-
tain a balance of active forces (myosin and tension) and
passive forces (resistance to filament breaking). Under
control conditions, myosin forces alone drive retrograde
flow quickly enough to keep up with leading-edge polymer-
ization, thus alleviating leading-edge membrane tension. In
this case, the P-domain width is determined by the distance
from the leading edge at which the actin-network density
provides enough resistance to balance the myosin forces
driving the flow. When myosin is inhibited, this initially
produces an imbalance between the leading-edge polymeri-
zation and the reduced retrograde flow speed. Initial
increase of the P-domain width creates membrane tension,
which in turn increases retrograde flow speed. The new
steady-state treadmill is achieved when the P domain has
expanded enough for the combination of membrane tension
and remaining myosin forces to balance the passive force
associated with filament breaking at the T zone. Our calcu-
lations suggest that myosin contractile forces still contribute
significantly to the treadmill dynamics after blebbistatin
treatment (f bm ¼ 0:2fm � 200 pN=mm, compared with
f bT � 100 pN=mm). This dynamic transition from the control
steady-state treadmill to the steady-state treadmill under
blebbistatin conditions is illustrated with numerical calcula-
tions based on Eqs. 1–7 (Fig. 3). Note that the values of fs
and u determine how quickly the system evolves to a new
steady state, but do not affect the values of the steady-state
retrograde flow speed or P-domain width (Fig. S2). The
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constrained values of the model parameters are summarized
in Table S2. The model calibration, and the resulting quali-
tative insights, are relatively robust to variation in the
measured values of vr and L that can be expected from
one growth cone to the next (Supporting Material).

Testing the model: role of actin turnover

F-actin disassembly throughout the P domain lowers effective
drag force at the transition zone

Now that the F-actin treadmill model is fully constrained,
with no remaining free parameters, additional experiments
can be used to test the model assumptions. In particular,
we consider experiments in which the role of actin turnover
in P-domain dynamics was explored (26).

When leading-edge polymerization in the growth cone is
inhibited by application of cytochalasin B, ongoing retro-
grade flow at a constant speed causes the network to retreat
from the leading edge (28). We can simulate this experiment
using reaction drift (Eq. 5) for veil actin density, al(t), in
combination with the time-dependent retrograde flow speed,

v0r ¼ vr

�
af þ a0e

�gL=vr

�.
ðaf þ alðtÞjx¼0Þ (Eqs. 3 and 4),

where vr and L are the values measured under control condi-
tions. In principle, this expression could predict the retro-
grade flow rate varying with time, because the veil actin
density at the T zone could vary transiently. However,
when we begin with the steady-state actin-density distribu-
tion in control (Eq. 7) as the initial condition, and then re-

move the boundary condition of constant leading-edge
density, a0 þ af, allowing the density distribution to evolve,
we find that the resulting rate of retrograde flow balances
exactly with the rate of depolymerization, such that the actin
density at the T domain (x ¼ 0) remains constant (Fig. 4 A).
For this reason, the retrograde flow speed does not change,
in agreement with the experimental observation.

On the other hand, when actin depolymerization
throughout the P domain is inhibited by treating a growth
cone with jasplakinolide (26), the pool of available G-actin
is depleted, which essentially freezes the network actin turn-
over. As a result, the network is cleared from the P domain
by continued myosin pulling at a retrograde flow speed that
decreases exponentially with time (26). Fluorescent images
and electron micrographs illustrate a buildup of actin fila-
ments in the transition zone coincident with retrograde
flow deceleration. We simulate this experiment by numeri-
cally calculating the time-dependent actin density distribu-
tion in the manner described in the previous paragraph,
but this time using the smaller depolymerization rate, gJ,
measured under jasplakinolide conditions (Table S2). In
this case, the balance between depolymerization and retro-
grade flow rates is no longer maintained, and the actin
density at the T zone increases with time, in agreement
with the experimental observation (Fig. 4 B). This in turn
causes retrograde flow speed to decrease exponentially
with time, in good numerical agreement with the experi-
mental data (Fig. 4 C). In these two cases, the model with
no tunable parameters successfully reproduces experimen-
tally observed behavior and illustrates the role of actin turn-
over in maintaining the balance of forces in the actin
treadmill. This supports the assumption that retrograde
flow is opposed by an effective drag force associated with
actin filament disassembly at the T zone, and illustrates
that constant depolymerization throughout the P domain is
necessary to maintain a balance of forces on the actin
network.

The decay rate of the retrograde flow speed after jasplaki-
nolide treatment, relative to the initial speed, is only sensi-
tive to the actin depolymerization parameters g and gJ
and does not depend on the initial values of vr and L. For
instance, a lower initial value of vr produces a steeper initial
actin-density gradient (Eq. 6), which in turn causes the
T-domain actin density to increase more quickly after
jasplakinolide treatment. However, the retrograde flow
balances with the actin gradient so that the T-domain actin
density changes by the same ratio for a given time interval.
For this reason, vr(t)/vr(t ¼ 0) is independent of the initial
value of vr. Indeed, growth cones pretreated with blebbista-
tin (which alters the steady-state vr and L but has no sig-
nificant effect on g and gJ (26)) exhibit nearly the same
retrograde flow decay rate after jasplakinolide treatment
as the control cones (26), in agreement with this model
prediction. For the same reason, the model predicts that
vr(t)/vr(t ¼ 0) is independent of the veil actin filament
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FIGURE 3 P-domain width adapts to mechanical perturbations to main-

tain treadmill. Numerical calculation of the P-domain width, L (upper),

polymerization speed, vg (lower, solid line), and retrograde flow speed, vr
(lower, dashed line), before and after blebbistatin treatment (at time t ¼
0), illustrating the transition to a new steady-state treadmill. Using cali-

brated values of the system parameters, the model reproduces experimental

measurements of vr and L after blebbistatin treatment. Note that the steady-

state values of L and vr are independent of the polymerization load-velocity

parameter u (Fig. S2).
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density at the leading edge, which decreases after jasplaki-
nolide treatment (26).

Model predictions: role of G-actin concentration
in treadmill and mechanism of G-actin recycling

P-domain width and retrograde flow are sensitive to leading-
edge G-actin concentration

Now that the F-actin treadmill model (Eqs. 1–7) has been
constrained and tested by published experimental data, we
can use the calibrated model to illuminate the role of the
G-actin distribution in the treadmill dynamics, and explore
a hypothetical mechanism for recycling of G-actin to the
leading edge. Note that our previous calculations of physical
parameters for the F-actin treadmill do not depend in a
detailed way on the G-actin distribution according to our
assumptions that polymerization takes place primarily at
the leading edge, and depolymerization is uniform through-
out the P domain. However, we expect that the rate of actin
polymerization will depend on the pool of available G-actin,
and we assume for simplicity that the polymerization rate
under zero load, v0, is directly proportional to the leading-
edge G-actin concentration.

To address the question of how the treadmill dynamics
depends on the available pool of G-actin, we begin by
considering what would happen if the level of G-actin
(and thus the unloaded actin polymerization rate v0) in the
stationary growth cone were suddenly increased.

As discussed previously, under control conditions the
membrane is not under tension (fT ¼ 0), and thus, we have
vg ¼ v0 ¼ vr ¼ fm/xbreak. If the unloaded polymerization
speed is suddenly increased by a factor a, the initial imbal-
ance between polymerization speed and retrograde flow
speed will cause P-domain expansion, which produces
leading-edge membrane tension (fT > 0). The leading-
edge tension will increase the retrograde flow and decrease
the polymerization speed until a new steady state is reached.
In the Supporting Material, we find the relationship between
the factor a, by which v0 was increased, and the resulting
steady-state P-domain width L0. Numerical calculations
show that if the G-actin concentration is at least doubled,
the P-domain width will approximately double to
L0 � 12� 14 mm, producing steady-state membrane tension
on the order of fT ~ 100 pN/mm (Fig. 5 A). The resulting
steady-state retrograde flow is v0r ~ 7–8 mm/min (Fig. 5 B),
an increase from the control value due to the added tension
force on the network and the reduced resistance to flow
associated with breaking forces (xbreak decreases with L0

because actin has more time to depolymerize before reach-
ing the T zone).

We also consider a second hypothetical experiment in
which a blebbistatin-treated growth cone is subjected to
a sudden increase in G-actin concentration. The result, in
the Supporting Material, shows that in this case, the

FIGURE 4 Model testing: role of actin turnover. (A) Actin density distri-

bution calculated from Eq. 6 at several times after treatment with cytocha-

lasin B, inhibiting leading-edge polymerization (t ¼ 0, solid line; t ¼
3 min, dashed line; t ¼ 6 min, dotted line). Because the actin density at the

transition domain remains constant, the resulting vr is also constant. (B)

Same as A, but with a lower depolymerization rate, gJ, corresponding to

the case of jasplakinolide-treated growth cones. In this case, the actin density

at the transition domain increases with time due to the slower rate of depoly-

merization in the network as it moves rearward. (C) Retrograde flow versus

time after jasplakinolide treatment, resulting from the actin density calcula-

tions in B (solid line) and experimental measurements (data points).
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steady-state P-domain width and retrograde flow speed are
relatively insensitive to increase in G-actin concentration
(Fig. 5, A and B). This is because even for control levels
of G-actin (i.e., with a ¼ 1), the blebbistatin-treated growth
cone has leading-edge tension on the same order as the stall
force (Table S2), such that only a small amount of actin-
network expansion with increasing G-actin is possible. For
saturating levels of G-actin, the retrograde flow speed is
sensitive to myosin concentration, while the P-domain
width is not.

Forward-directed fluid flow can account for observed
distributions of G-actin

As discussed above, the actin dynamics in the P domain are
sensitive to leading-edge G-actin concentration, and newly
recycled G-actin must be delivered to the leading edge
quickly enough to maintain the rapid treadmill. A recent
experiment using DNasel labeling to track G-actin mono-
mers demonstrated that the G-actin distribution in the
P domain usually has a positive gradient, with G-actin
concentration highest at the leading edge (26). Given that
F-actin is disassembled and recycled to G-actin uniformly
throughout the P domain, we now turn to the question of
how G-actin is transported to the leading edge: Can the
observed distributions be explained by diffusion alone, or
is active transport in the form of forward-directed fluid
flow necessary to achieve a positive gradient in the G-actin
distribution?

We use the mechanical parameters determined from the
calibration of the F-actin treadmill to predict the form of
the G-actin distribution as a function of the hypothetical
forward fluid flow, vf. The equation governing the G-actin
distribution (Eq. 8) in the steady state has the form

D
v2G

vx2
� vf

vG

vx
þ gF0 exp

��gðL� xÞ
vr

�
¼ 0; (10)

which has the analytical solution (using the boundary condi-
tions discussed for Eq. 8)

GðxÞ ¼G0 exp

�
� vf ðL� xÞ

D

�
þ F0v

2
r

vf vr � Dg

�


exp

�
� gðL� xÞ

vr

�
� exp

�
� vf ðL� xÞ

D

��
:

(11)

In the absence of forward-directed fluid flow, the predicted
G-actin concentration decreases toward the leading edge
(Fig. 5 C), in contrast to the experimentally observed posi-
tive G-actin gradient. On the other hand, in the presence of
forward fluid flow of greater than vf ~ 0.15 mm/s, the distri-
bution increases toward the leading edge, and it compares
well quantitatively with the experimentally measured
G-actin distribution for vf ~ 0.3 mm/s (Fig. 5 C) (26).
Thus, we conclude that forward-directed fluid flow of

FIGURE 5 Model prediction for G-actin increase. (A) P-domain width as

a function of G-actin increase factor a for control conditions (solid line) and

for blebbistatin-treated growth cones (dashed line), based on expressions

derived in the Supporting Material. (B) Retrograde flow rate versus a for

the same conditions as in A. (C) G-actin spatial profiles (normalized by

G0) predicted by Eq. 11 for vf ¼ 0 mm/s (dotted line), 0.15 mm/s (dashed

line), 0.3 mm/s (solid line). We used parameters L, g, and vr measured in

Van Goor et al. (26), D ¼ 5 mm2/s (54), and the ratio F0=G0 ¼ 2 (55).
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magnitude 0–0.3 mm/s may actively transport G-actin
toward the leading edge in the P domain of the growth
cone. Such flow was observed and measured in other cells
(5,48); here, for the first time to our knowledge we suggest
its existence in the nerve growth cone. Flow of this magni-
tude can increase the G-actin concentration at the leading
edge twofold compared to diffusion-based transport, which
would significantly accelerate the actin treadmill.

DISCUSSION

Using a model for the actin network in the peripheral region
of stationary nerve growth cones, we have calibrated the
balance of forces on the actin treadmill, demonstrating
that retrograde actin flow under control conditions is driven
primarily by myosin contractile forces. Our results support
the assumption that the effective drag force resisting retro-
grade flow is proportional to filopodial and veil (lamellipo-
dial) actin density at the transition domain, because
filaments must be severed to maintain actin turnover. We
show that when myosin contractile forces are inhibited,
the system transitions to a new steady state in which retro-
grade flow is driven by membrane tension. Simulations of
the model illustrate that a constant rate of actin depolymer-
ization throughout the lamellipodial network is essential for
maintaining a balance of forces with a constant rate of retro-
grade flow. Available experimental data allow estimates of
all relevant forces.

After constraining and testing the F-actin treadmill model
with published experimental data, we make a testable
prediction that increasing the G-actin concentration would
alter the force balance, increasing the contribution of
leading-edge tension to the retrograde flow. This transition
would be characterized by an increase in P-domain width
and retrograde flow, a prediction that could in principle be
tested experimentally by using drugs that alter the
G-actin/F-actin balance. We also predict that the P-domain
dynamics will be less sensitive to G-actin concentration in
blebbistatin-treated cells, where myosin inhibition has
already led to an increase in leading-edge tension.

We demonstrate that the experimentally observed positive
G-actin gradient (increasing toward the leading edge) in the
P domain can be maintained if rapid forward-directed fluid
flow of the cytoplasm on the order of 10–20 mm/min exists
in the P domain. This predicted flow would significantly
increase the G-actin concentration at the leading edge,
accelerating the actin treadmill. Forward-directed fluid
flow has been directly observed in keratocytes (5). Further
research will be needed to observe and measure fluid flow
directly in growth cones. More detailed future models could
also help distinguish the potential roles of forward-directed
fluid flow and other hypothetical forms of active transport of
G-actin, such as myosin transport along filopodia (49).

Another future extension for our model is to predict the
behavior of the system when substrate adhesion increases

in response to external guidance cues. A careful treatment
of the question will require a submodel for adhesion
dynamics, similar to that in Chan and Odde (27), but we
can make some simple initial predictions based on the
conclusions of the study described here. Assuming, accord-
ing to previous modeling (10,11) and observations (12), that
adhesion to the substrate generates viscous-like friction,
Eq. 3, which describes the force balance on the P domain,
can be rewritten as fm þ fT ¼ ðxbreak þ xadhÞvr, where xadh
is the effective adhesion drag coefficient. When adhesion
increases drastically, this equation says that the retrograde
flow is almost canceled. In the treadmill stage, the polymer-
ization rate at the front is balanced by the speed of the retro-
grade actin flow. This means that when the flow is canceled
by the adhesion, the protrusion speed will be equal to the
polymerization rate, and thus to the retrograde flow speed
when the cell was stationary. The P-domain width after
the adhesion increase, according to the model, will not
change. Expanded to 2D, this model predicts that the cone
can turn by establishing an asymmetric adhesion pattern,
in which case asymmetric retrograde flow and protrusions
will emerge, as suggested in Danuser and Oldenbourg
(50). Note, however, that another study (51) proposes that
the retrograde flow is symmetric, and instead, variations
of the polymerization rate govern the turning behavior.

The importance of the nerve growth-cone mechanics in
motility (52) and of mechanical cues in its guidance (53)
is well established. Thus, the quantitative description of
the growth-cone mechanics resulting from our study is an
important step toward a more complete understanding of
nervous system development. In the future, a more detailed
mechanical model should incorporate the effects of
compression and shear in the lamellipodium (52). Another
future application of the model could be to analyze the
role of microtubules and microtubule-based motors in the
actin treadmill and growth-cone turning (54,55).

SUPPORTING MATERIAL

More observations discussed in detail, physical reasoning, model equations,

experimental results, references, two tables, and two figures are available at

http://www.biophysj.org/biophysj/supplemental/S0006-3495(12)00283-4.
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Fluorescence Fluctuation Spectroscopy Enables Quantitative Imaging of
Single mRNAs in Living Cells

Bin Wu, Jeffrey A. Chao, and Robert H. Singer*
Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York

ABSTRACT Imaging mRNA with single-molecule sensitivity in live cells has become an indispensable tool for quantitatively
studying RNA biology. The MS2 system has been extensively used due to its unique simplicity and sensitivity. However, the
levels of the coat protein needed for consistent labeling of mRNAs limits the sensitivity and quantitation of this technology.
Here, we applied fluorescence fluctuation spectroscopy to quantitatively characterize and enhance the MS2 system. Surpris-
ingly, we found that a high fluorescence background resulted from inefficient dimerization of fluorescent protein (FP)-labeled
MS2 coat protein (MCP). To mitigate this problem, we used a single-chain tandem dimer of MCP (tdMCP) that significantly
increased the uniformity and sensitivity of mRNA labeling. Furthermore, we characterized the PP7 coat protein and the binding
to its respective RNA stem loop. We conclude that the PP7 system performs better for RNA labeling. Finally, we used these
improvements to study endogenous b-actin mRNA, which has 24xMS2 binding sites inserted into the 30 untranslated region.
The tdMCP-FP allowed uniform RNA labeling and provided quantitative measurements of endogenous mRNA concentration
and diffusion. This work provides a foundation for quantitative spectroscopy and imaging of single mRNAs directly in live cells.

INTRODUCTION

Imaging mRNAs in single living cells allows the dynamics
of mRNA transcription, transport, and localization to be
studied with greater spatiotemporal resolution compared
with traditional approaches. Several techniques have been
developed to visualize mRNA with single transcript sensi-
tivity in live cells (1,2). One can directly inject or transfect
fluorescently labeled mRNA into cells that can be imaged
with excellent signal/noise ratio (SNR) (3,4). A drawback
of this approach is that these RNAs are not synthesized
and processed normally by the cell, and consequently may
lack certain trans-acting protein factors that influence
RNA metabolism. To image endogenous mRNA, in-
vestigators have used different fluorogenic probes, such as
molecular beacons. These probes produce fluorescence
signal only when they hybridize to their target RNAs (5).
However, this technology is limited by complicated
hybridization kinetics and the reduced stability of hybrid-
ized mRNA. Recently, RNA aptamers that bind to small
molecules that resemble GFP-like fluorophores have been
developed (6). The small molecule becomes fluorescent
only when the reporter RNA containing the aptamer
sequence binds to it. This is a promising technique to image
RNA; however, the sensitivity needs to be improved to
detect single transcripts. In the last approach, an RNA-
binding protein fused to a fluorescent protein (FP) is co-
expressed with a reporter mRNA containing the RNA
sequence that the RNA-binding protein recognizes. The
MS2 system is the first and most widely used technique
utilizing this strategy (7). A drawback of this system,

however, is the background fluorescence generated from
free coat proteins, which decreases the SNR and labeling
efficiency. In this work, we developed a technology to
address this problem by engineering coat proteins so
that very low background levels and high SNR can be
obtained.

In the MS2 labeling method, a genetically encoded
sequence derived from the bacteriophage MS2 is inserted
into the gene of interest. The sequence folds into a unique
stem-loop structure that forms the MS2-binding site
(MBS) for the MS2 coat protein (MCP) (8). When cells
that express the gene carrying MBS also express MCP fused
to an FP (MCP-FP), the mRNA of interest is fluorescently
labeled by MCP-FP. Because both the MCP-FP and the
reporter mRNA are genetically encoded, it is possible to
make stable cell lines or even transgenic animals. This tech-
nique was first employed to image ASH1 mRNA in yeast
(7). Since then it has been used to image transcription, trans-
port, and localization of mRNA in various cell types and
organisms (9–13). Recently, a transgenic mouse model
(the MBS mouse) was established in which the 24xMBS
cassette is inserted into the 30 untranslated region (UTR)
of the b-actin gene (15). With the MBS mouse, it is possible
to image an endogenous mRNA in isolated cells, tissue, or
even a living animal. For example, visualization of the
endogenous b-actin mRNA moving through the nuclear
pore complex has been achieved in a cell line derived
from the MBS mouse (11). To image multiple mRNAs in
the same cell, other RNA-binding proteins and their cognate
RNAs have been engineered in a similar manner as the
MS2 system (16–19). PP7 bacteriophage coat protein
binds to its own stem-loop RNA primer-binding site
(PBS) with high affinity (Kd¼ 1.6 nM (18)) but only weakly
interacts with the MBS (Kd > 1 mM). Because both MCP
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and PCP recognize unique RNA stem loops, this allows both
systems to be used in the same cell to visualize distinct
mRNA populations. Recently, the PP7 system was used
to image real-time transcription dynamics in live yeast
cells (20).

One of the limitations of MS2-like systems is the high
fluorescent background due to the unbound MCP-FP
signal. To detect single mRNA molecules, it is necessary
to incorporate multiple binding sites into the mRNA to
increase the signal of the mRNA over the background of
MCP-FP. It was previously observed that not all MBSs
are completely bound by MCP-FP (21). In addition, it is
often found that the mRNAs are not uniformly labeled in
different cells, which complicates quantitative analysis.
For example, to quantify the number of nascent transcripts
at the transcription site, one must know the number of
MCP-GFPs per mRNA to correctly calibrate the measure-
ment. It is accepted that both MCP and PCP bind to their
target RNA stem loops as dimers. However, the extent of
dimerization of the CP-FP fusions in the cell is not known.
Therefore, to fully utilize these labeling techniques to
obtain quantitative information about mRNA dynamics
in living cells, one must ensure that the dimerization of
CP-FP is thoroughly calibrated and carefully optimized.
In this work, we constructed single-chain tandem dimers
of the MS2 and PP7 coat proteins (termed tdMCP and
tdPCP, respectively), which eliminated the additional
dimerization step and allowed us to achieve uniform
labeling and quantitative imaging of RNA with substan-
tially increased SNR.

We used fluorescence fluctuation spectroscopy (FFS) to
quantify the MS2 and PP7 labeling systems. FFS utilizes
the fluctuating fluorescence signal when fluorescently
labeled molecules move through a subfemtoliter observa-
tion volume, allowing various physical and biological
systems to be studied at the single-molecule level.
Fluorescence correlation spectroscopy (FCS) (22–24),
a well-known FFS technique, uses the autocorrelation
function to measure concentration, diffusion, transport,
and interactions both in vitro and in vivo. FCS distinguishes
species based on their diffusion coefficients, which ulti-
mately depend on molecular weights (25). The mRNA
diffuses much more slowly than the free CP-FP, which
allows the diffusion constant of mRNA to be specifically
measured with FCS. Another important FFS tool is bright-
ness analysis. Brightness characterizes the average fluores-
cence intensity of a single particle. Because brightness
depends on the number of fluorophores in a particle, it
reveals the oligomerization state of a molecule (26–28).
For example, if two fluorescently labeled monomers form
a dimer, the brightness of the dimer will be twice that of
the monomer (27). Brightness analysis has been used to
measure stoichiometry and binding curves of proteins
directly in live cells (29,30). The mRNA molecule, bound
by multiple CP-FPs, has a brightness value much higher

than that of free CP-FP. Therefore, both the brightness and
the diffusion coefficient can be used to resolve mRNA
from the background of free CP-FPs. Time-integrated fluo-
rescence cumulant analysis (TIFCA) (31), which was devel-
oped to unify the brightness and diffusion coefficient into
a same analytical model, is an ideal tool for extracting
quantitative information from the data.

In this study, we first used an FFS brightness analysis
to measure the dimerization of both MCP-FP and PCP-
FP. We then generated single-chain tandem dimers of
both coat protein (tdMCP and tdPCP) that significantly
improved the labeling efficiency and uniformity. Subse-
quently, we measured the copy number of the CP-FPs (or
tdCP-FPs) on an mRNA and compared the MS2 and PP7
systems quantitatively. Finally, we demonstrated the biolog-
ical value of this approach by applying FFS to measure
the diffusion constants and concentration of endogenous
b-actin mRNA. The concentration of b-actin transcripts
in the nucleus during serum stimulation was measured
quantitatively.

MATERIALS AND METHODS

FFS and data analysis

The FFS experiments were performed on an in-house-built, dual-channel,

two-photon fluorescence fluctuation microscope. The instrument consists

of an Olympus IX-71 and a mode-locked Ti:Sapphire laser (Chameleon

Ultra; Coherent, Santa Clara, CA). A 60� Plan-Apo oil immersion

objective (NA¼1.4; Olympus, Center Valley, PA) is used to focus the

laser and collect the fluorescence. The scattered laser light is eliminated

by two short-pass filters (ET680sp-2p8; Chroma, Rockingham, VT). The

fluorescence is separated into two different detection channels with

a dichroic mirror (565DCXR; Chroma). The green channel is equipped

with a band-pass emission filter (FF01-525/50-01; Semrock, Rochester,

NY) to eliminate the reflected fluorescence from red channel. Two

avalanche photodiodes (APD) (SPCM-AQR-14; PerkinElmer, Waltham,

MA) detect photons in each channel. The output of the APD, which

produces TTL pulses, is directly connected to a two-channel data acquisi-

tion card (FLEX02; Correlator.com). The recorded photon counts were

stored and later analyzed with programs written in IDL (ITT Exelis,

McLean, VA).

The normalized brightness b (27) is defined as b ¼ lapp/lEGFP. The

sample apparent brightness lapp is measured via generalized Mandel’s Q

parameter analysis (32). The brightness lEGFP is obtained in a calibration

experiment by measuring cells transfected with enhanced green fluorescent

protein (EGFP). For a mixture of different homo-oligomers, the normalized

brightness depends on the dissociation constant and the degree of oligomer-

ization. For a monomer/dimer equilibrium A24
Kd

2A with dissociation

constant Kd, the normalized brightness b is

b ¼ Kd þ 8At �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KdðKd þ 8AtÞ

p
4At

; (1)

where At is the total concentration of A, At ¼ 2A2 þA. In the FFS experi-

ment, At is readily measured by the total intensity divided by the monomer

brightness. Therefore, the dissociation constant Kd is determined by fitting

b as a function of At.

We performed a single-color TIFCA analysis as described previously

(31). Basically, we rebinned the raw photon counts to calculate the factorial
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cumulants for different sampling times. We then fit the experimental cumu-

lants to a theoretical model:

k½n�ðTÞ ¼
X
i

gnNiNN lni BnðT; tdi; rÞ; (2)

where NiNN , li, and tdit are respectively the number of molecules, brightness,

and diffusion time of the ith species. The function Bn(T;TT tdit , r) is the nth

order binning function as defined previously (31). The summation is

over the number of species. The parameter gn is the nth order g-factors,

and r is the squared beam waist ratio that describes the excitation laser

profile (31).

The autocorrelation curves were fit to a simple diffusion model:

GðtÞ ¼
X
i

G0i�
1þ t=t tdi

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t=t rtdi

qffiffi ; (3)

where the parameter G0i ¼ g2 f
2
iff =NiN . Note that G0i depends not only on the

number of molecules but also on the fractional intensities fiff ¼ NiNN li/SjS Njj jNN ljl .

Without knowledge of brightness, the autocorrelation function is not able

to recover the number of molecules. Thus, we used it only to obtain the

diffusion time of molecules.

Fluorescence imaging and analysis

Images were taken with a 150� 1.45 NA oil immersion objective

(Olympus) and 488-nm excitation laser, and recorded with an EMCCD

camera (model DU897 BI; Andor iXon, South Windsor, CT). The micro-

scope was controlled with MetaMorph imaging software. A time-lapse

movie of a single Z-planeZZ was recorded with a 50-ms exposure time. To

count mRNA in a single plane, we used a spot detection algorithm based

on a two-dimensional Gaussian mask as described previously (33) and

implemented in MATLAB (The MathWorks, Natick, MA).

Plasmid construction

To create single-chain tandem dimeric coat proteins, we used polymerase

chain reaction (PCR) to produce two coat protein gene sequences with

appropriate restriction sites. The linker region between the two MCPs

is ATCTACGCCATGGCTTCT, and that between the two PCPs is

CGTGCGGATCCGCTAGCCTCC. A nuclear localization signal (NLS)

and hemagglutinin (HA) tag were also added to the constructs. We created

NLS-PCP-EGFP (P000234), NLS-tdPCP-EGFP (P000233), NLS-MCP-

EGFP (P000109), and NLS-tdMCP-EGFP (P000143) genes by PCR

(Fig. 1 A). The NLS sequence was added to sequester the coat protein in

the nucleus and keep the unbound coat protein in the cytoplasm at

a minimum. All coat protein constructs used in this work have an

NLS signal, so the NLS is omitted for simplicity when we refer to

a coat protein. We cloned these genes into a phage-ubc-RIG lentiviral

backbone from which the DsRed-IRES-GFP fragments had been excised

using NotI and ClaI. We also further modified the lentiviral backbone

to replace the human ubiquitin C (UBC) promoter with the cytomegalovirus

(CMV) promoter. Using PCR, we generated the sequence coding for

cyan fluorescent protein (CFP). After the stop codon, we inserted

24xMBS (24xPBS) sites. Finally, we combined phage-CMV backbone

and CFP-24xMBS (P000169) (or CFP-24xPBS (P000179)) into a complete

plasmid, yielding mRNAwith a CFP open reading frame and 24xMBS (or

24xPBS) in the 30 UTR.

Cell culture and sample preparation

We used a mouse with 24xMBS sites knocked into the 30 UTR of the Actb

gene (MBS mouse) and isolated the E14 mouse embryonic fibroblast

(MEF) line as described elsewhere (15). To stably express MCP-EGFP

and tdMCP-EGFP, we created recombinant lentiviral particles using the

phage UBC plasmid (described above) and used them to infect the MBS-

MEF. After several passages, the cells were sorted for positive EGFP fluo-

rescence by flow cytometry. U2OS cells were obtained from American

Type Culture Collection. Both cells were maintained in Dulbecco’s modi-

fied Eagle’s medium (10-013; Cellgro, Manassa, VA) supplemented with

10% fetal bovine serum (FBS, F4135; Sigma-Aldrich, St. Louis, MO)

and 1% penicillin and streptomycin (15140-122; Invitrogen). Transient

transfection was performed with Fugene 6 (11814443001; Roche, Indianap-

olis, IN) according to the manufacturer’s instructions. Cells were subcul-

tured in a Delta-T coverglass-bottomed imaging dish (Bioptechs, Butler,

PA). Before measurements, the growth medium was removed and replaced

with Leibovitz L15 medium (21083-027; Invitrogen, Grand Island, NY)

with 10% FBS unless explicitly indicated. For MEFs, the dish was also

coated with 10 mg/ml human fibronectin (F2006; Sigma-Aldrich) for

30 min before the cells were plated. During the course of the experiment,

the Delta-T dish was kept at 37�C.

A

B

CP GFPNLS

CP GFPNLS PCP

C

FIGURE 1 Normalized brightness of coat proteins. (A(( ) Schematic of the

coat protein constructs. (B) The brightness of CP-EGFP measured in U2OS

cells is plotted as a function of CP concentration. From the data, it is clear

that PCP-EGFP (triangles) dimerizes at a much lower concentration than

MCP-EGFP (diamonds) does . The data were fit to Eq. 1 to obtain the disso-

ciation constant of the coat protein (410 nM for MCP-EGFP and <20 nM

for PCP-EGFP). (C) The normalized brightness of tdCP-EGFP stays at

unity at different concentrations, indicating that the tandem dimers are

behaving as monomers.
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RESULTS

Brightness analysis of the CP-FP and tdCP-FP
fusion proteins

Previous studies showed that MCPs and PCPs bind to their
target stem loops as dimers (18,34,35). We used FFS bright-
ness analysis to characterize the oligomerization state of
MCP-FP and PCP-FP in living cells. We constructed coat
proteins fused to EGFP that also contained an N-terminal
NLS (Fig. 1 A). The NLS was used to concentrate the free
CP-FPs in the nucleus and thus achieve a higher SNR
of mRNA in the cytoplasm. We expressed CP-EGFP in
U2OS cells and conducted FFS measurements in the
nucleus. The brightness of the sample was calculated via
a generalized Mandel’s Q parameter analysis (32). In
Fig. 1 B, the normalized brightness values are plotted as
a function of the concentration of CP-EGFP. Each point
represents a measurement in a different cell. The normalized
brightness b, determined by the ratio between the brightness
of CP-EGFP and EGFP monomer (27), provides a direct
measure of the average oligomeric states of the labeled
proteins. For instance, a normalized brightness of b ¼ 2
indicates that the protein is a dimer. When the concentration
of the protein is varied, the normalized brightness will
increase from 1 to 2, depending on the proportions of the
monomer and dimer. Therefore, a titration curve of bright-
ness versus concentration gives rise to the apparent Kd of
the dimerization interaction. The normalized brightness of
PCP in Fig. 1 B (triangle) lies between 1 and 2 and saturates
at 2 at high concentrations. The titration curve indicates that
the Kd,app of PCP-EGFP is <20 nM (due to the lack of data
at very low concentration, we extrapolated the data using
Eq. 1; dashed line). Surprisingly, for the MCP (Fig. 1 B, dia-
mond), the situation is very different. MCP-EGFP reaches
a dimer fraction at a much higher concentration than PCP-
EGFP does, indicating that the former is a much weaker
dimer. Fitting the data to Eq. 1 yields Kd, app ¼ 410 nM,
which is considerably weaker than the dimerization esti-
mated by biochemical experiments (8). Although biochem-
ical experiments show similar Kd-values for PCP and MCP
in vitro, the live-cell FFS experiment shows that MCP-
EGFP is a weaker dimer than PCP-EGFP. Further experi-
ments showed that the NLS signal, the linker length between
MCP and EGFP, and the identity of the FP do not affect the
dimerization affinity of MCP. The reason for the reduced
dimerization affinity for MCP-FP is still under investigation.

Free CP-FPs that do not bind to mRNA increase the back-
ground fluorescence, so the concentration of CP should be
maintained as low as possible. However, because only the
dimeric CP can bind to the stem loop, it is imperative to
have the CP concentration high enough to maintain suffi-
cient dimer concentration. This is particularly important
for the MS2 system because our data suggest that significant
amounts of monomeric MCP-EGFP exist under most exper-

imental conditions. In the crystal structures of both MCP
and PCP dimers, the N-terminus of one protomer is in close
vicinity to the C-terminus of the other protomer (18,35).
Due to this structural arrangement, a single-chain tandem
dimer of the coat proteins (tdMCP and tdPCP) can be con-
structed that enables an intramolecular dimer to be formed.
The tdMCP has been shown to bind to the MBS with the
same affinity as the intermolecular MCP dimer, and has
been used to image single molecules of RNA in bacteria
(36,37). Based upon these experiments, we generated
tdMCP-EGFP and tdPCP-EGFP and determined that they
both had a brightness of one (Fig. 1 C), which was, as ex-
pected, independent of concentration. The fact that tdCP-
FP has a single brightness value is particularly advantageous
for FFS brightness analysis, because the apparent brightness
of CP-FP depends on its concentration.

tdCP-FP-labeled mRNA has uniform brightness

Quantitative fluorescence imaging and spectroscopy require
knowledge of the labeling efficiency of mRNA. Uniform
labeling of the mRNA facilitates a quantitative interpreta-
tion of experimental results. FFS offers a simple method
to measure the number of CP-FPs bound to an mRNA
by the normalized brightness of an mRNA. Usually the
mRNA has multiple MBSs (or PBSs) and therefore binds
to many CP-FPs. The brightness of the mRNA is much
higher than that of the free CP-FP. Furthermore, the
mRNA is significantly larger than the free CP-FP and
diffuses much more slowly. Therefore, one can distinguish
them by both brightness and diffusion time. TIFCA (31) is
ideal for such an analysis because it incorporates both
brightness and diffusion time into the same analysis model.

We constructed plasmids coding for CFP with 24xPBS
or 24xMBS inserted after the stop codon in the 30 UTR
(Fig. 2 A). The plasmid was transiently transfected together
with the appropriate CP-EGFP in U2OS cells. The experi-
ment was done at a two-photon laser wavelength of
1010 nm so that the CFP would not be excited. To aid the
focus of the laser in the cell, mCherry was also cotransfected.
The fluorescence was split into two channels by a dichroic
mirror and detected by two APDs. We focused the two-
photon laser spot at the mid-section in the perinuclear region
of a cell by monitoring the red channel signal. The fluores-
cence intensity trace of the red channel and green channel
are plotted in Fig. S1 A of the Supporting Material. From
the figure, it is clear that the green fluorescence intensity
has a much higher level of fluctuations than that of the red
channel, emphasizing the value of the red channel for
defining the focal point of the laser. We analyzed the data
in the green channel using TIFCA. A one-species model
was not able to fit the data, which was expected because of
the presence of two components (the mRNA and the free
CP-FPs). We fit the data with a two-species model, which
more accurately described the data. An example of the fit is
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presented in Fig. S1 B. From this fit, we measured the bright-
ness of themRNA. In Fig. 2B, we plot the normalized bright-
ness of the CFP-24xPBS mRNA labeled by tdPCP-EGFP as
a function of total EGFP concentration. Each symbol repre-
sents a measurement of a single cell. Even though there
were different concentrations of mRNA and tdPCP among
the cells, the brightness and the number of coat proteins
that bound to the mRNA were relatively constant. The
average number of tdPCP-EGFP was 235 5, that is, within
error, equal to the expected maximum occupancy of the
24xPBS. We also measured the CFP-24xPBS mRNA co-
transfected with PCP-EGFP. The normalized molecular
brightness of mRNA is shown in Fig. 2C. At high concentra-
tions of PCP-EGFP, the normalized brightness saturated at
49 5 9. This is also equal to the expected maximum occu-
pancy number, 48 (represented as the dash-dotted line),
because each stem loop binds to a dimer of PCP-EGFP. In
addition, we notice that the mRNA brightness was reduced
at low concentrations of PCP-EGFP, where the dimer was
not sufficient to saturate all stem loops on the mRNA.

We performed the same experiment using the MS2
system. We cotransfected the CFP-24xMBS mRNA with
tdMCP-EGFP and mCherry. The measured mRNA bright-
ness is shown in Fig. 2 D. It is apparent that the normalized
brightness stays constant, but at a lower value than the ex-
pected number of 24. In fact, the average is only 13 5 2
(shown as dotted lines). Similarly, we cotransfected the
CFP-24xMBS mRNA and MCP-EGFP together to assess

the binding of MCP dimer to mRNA. Not surprisingly, the
brightness of the MCP-EGFP-labeled mRNA depended on
the concentration of MCP-FP, as shown in Fig. 2 E. The
brightness increased with the concentration of MCP-GFP.
At the saturation level, the average brightness of mRNA is
26 5 3, twice that of tdMCP-EGFP, as expected. It was
previously reported that the average number of MCP-EGFPs
on an mRNA that contains 24xMBS is 33 (21), also indi-
cating an incomplete occupancy. The reason for incomplete
binding is further discussed below, but a direct consequence
of differences in CP-FP occupancy is that the mRNAs
labeled using the PP7 system were brighter, and hence
had better SNR than those labeled with the MS2 system in
live-cell imaging.

Imaging endogenous b-actin mRNA

As mentioned above, we constructed an MBS mouse in
which the 30 UTR of b-actin gene has 24xMBS knocked
in (15). It is possible to image the endogenous b-actin in
any cell type from this mouse. We isolated E14 mouse
embryonic fibroblasts (MBS-MEF) and made a stable
MEF cell line with SV40 T antigen (15). To compare
the performance of tdMCP with that of MCP, we made
MBS-MEF cell lines that stably express tdMCP-EGFP
and MCP-EGFP, respectively, via lentiviral infection, as
described in Materials and Methods. The cells were
then imaged on a fluorescence microscope. As shown in

B C

D E

A A ... A ACFP
A

24xPBS, tdPCP 24xPBS, PCP

24xMBS, tdMCP 24xMBS, MCP

FIGURE 2 Normalized brightness of mRNA.

(A(( ) mRNA constructs used in the experiment.

The mRNAs have a CFP open reading frame. After

the stop codon, 24xPBS or 24xMBS is inserted into

the 30 UTR. (B) CFP-24xPBS is cotransfected with

tdPCP-EGFP and mCherry in U2OS cells and

measured for 3 min at a wavelength of 1010 nm.

The two-species fit of the data reports the bright-

ness of the mRNA. The normalized mRNA bright-

ness, which measures the number of EGFPs on the

mRNA, is plotted as a function of the total concen-

tration of EGFP, determined by dividing the total

fluorescence intensity by the EGFP brightness.

The data indicate that the average number of

EGFP on mRNA is 23 5 5, implying that 24

PBS are fully occupied. (C) The same experiments

were performed as in B except that tdPCP-EGFP

was substituted by PCP-EGFP. The normalized

brightness of mRNA saturates at 48 at high PCP

concentration, but at low concentration the PP7

stem loops are not fully occupied. (D and E) The

same experiments were performed on CFP-

24xMBS cotransfected with tdMCP-EGFP (D) or

MCP-EGFP (E). The normalized brightness of

mRNA does not change with concentration for

tdMCP-EGFP (the average is 13 5 2), but it is

approximately half of the expected full occupation

number, 24. For MCP-EGFP, the mRNA brightness

increases with the concentration of MCP and satu-

rates at 26 5 3.
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Fig. 3 A, MCP-EGFP did not label the cells uniformly. The
cell in the upper-left corner had higher fluorescence inten-
sity in the nucleus and the mRNA was brightly labeled.
However, the mRNAs at the lower right of the image were
only faintly labeled. The densities of labeled mRNA were
also significantly different between the two cells. This is
clearly demonstrated in Movie S1. On the other hand, the
cell labeled with tdMCP-EGFP had more uniform labeling,
as shown in Fig. 3 B and Movie S2. Although the fluores-
cence intensity in the nucleus was similar to that of the
dimmer cell in Fig. 3 A, the mRNA was brightly labeled.
In fact, in some cells, the tdMCP-EGFP concentration was
so low that the nuclei looked dark, but the mRNAs were still
brightly labeled. To evaluate the labeling efficiency of MCP
and tdMCP quantitatively, we counted the number of b-actin
mRNAs in the cytoplasm. We used an automated computer
program as described in Materials and Methods (Airlocal-
ize) to localize the diffraction-limited fluorescence spots.
The cytoplasm was segmented manually, and spots inside
the cytoplasmic area were counted as mRNAs. The average
fluorescence intensity inside the nucleus was measured to
indicate the expression level of the coat proteins. As shown
in Fig. 3 C, the detected mRNA number (normalized by the
cytoplasm size) stayed constant for various expression
levels of tdMCP (triangle), whereas for MCP (diamond) it
depended on the concentration of the coat protein in the
nucleus. Only at high concentration did it saturate at the
level detected by tdMCP.

FFS of endogenous b-actin mRNA

Finally, we applied FFS to study endogenous b-actin mRNA
in MBS-MEF. We stably expressed tdMCP-EGFP in the
MBS-MEF as described in the Materials and Methods
section and in (15). The two-photon laser was focused in
the cytoplasm near the nucleus and measured for 3 min.
An example of a fluorescence intensity trace is plotted in
Fig. S2 A. The autocorrelation function was calculated
from the data and fit with a two-species diffusion model
(Fig. S2 B). From the fit, we obtained two diffusion times.
One is close to that of free tdMCP-EGFP and the other is
much longer (100 5 30 ms), which is identified as the
mRNA. From the diffusion time, we can infer the diffusion
constant based on the calibration of the laser beam waist.
A scatter plot of the diffusion constant of mRNA in the
cytoplasm is shown in Fig. 4 A. The diffusion constants of
mRNA ranged from 0.15 to 0.74 mm2/s, with an average
of 0.35 mm2/s. The same data were also subjected to TIFCA
fitting, which provided the molecular brightness and the
concentration of mRNA. The histogram of mRNA concen-
tration is plotted in Fig. 4 B. The b-actin mRNA concentra-
tion ranged from 1 to 30 nM, with an average of 11 nM.

The transcription of b-actin responds to serum starvation
and stimulation (38), and the transcription dynamics can be
followed by fluorescence in situ hybridization to monitor the

A

B

C

FIGURE 3 MBS-MEF cells stably expressing (A(( ) MCP-EGFP or (B)

tdMCP-EGFP are imaged on an epifluorescence microscope with an excita-

tion wavelength of 488 nm. To assist the comparison, both images are scaled

with the same black/white levels. (A(( ) The signal of MCP-EGFP-labeled

mRNA depends on the concentration of MCP. The upper-left cell has higher

fluorescence intensity in the nucleus and more detectable mRNA than the

lower-right cell. These two cells are in the same imaging field. (B) mRNA

is uniformly labeled with tdMCP-EGFP. The cell has similar fluorescence

intensity in the nucleus as the dimmer cell in panel A, but mRNAmolecules

are brightly and uniformly labeled. The scale bar is 5 mm. (C) The detected

mRNAnumber in the cytoplasm (normalized by the size of the cytoplasm) is

plotted as a function of fluorescence intensity in the nucleus. Each symbol is

a measurement of a single cell. To facilitate comparison, the same criterion

for spot detection was used for all images. With tdMCP labeling, the de-

tected mRNA number does not depend on the expression level of tdMCP

(triangles). However, for MCP-labeled mRNA (diamonds), the detected

mRNAs increase with the concentration of MCP and only reach the

tdMCP-detected mRNA level at high concentration.
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transcript level. We studied the serum stimulation kinetics
by measuring mRNA concentration in the nucleus with
FFS. The MBS-MEF cells were serum-starved overnight
before they were subjected to 20% serum. We then took
FFS measurements in the nucleus for 30 min. We divided
the data into 3-min segments and fit all segments globally
by linking the brightness parameters together while allow-
ing the concentration of species to vary. As a result, the
concentration of mRNA during the serum stimulation was
obtained. The concentration is plotted in Fig. 4 C. From
the plot, there is essentially no mRNA in the nucleus due
to the serum starvation. The concentration of mRNA
increases after serum stimulation and reaches a maximum
after 10 min and then decreases slowly to a steady-state
value. There is a large variation among the cells in terms
of kinetic response. In Fig. 4 A, we show the scatter plot
of the diffusion constant of mRNA in the nucleus compared
with that in the cytoplasm. The diffusion constant is larger in
the nucleus than in the cytoplasm, possibly due to factors
(e.g., ribosomes) binding to the mRNA. The average diffu-
sion constant in the nucleus is 0.72 mm2/s.

DISCUSSION

When imaging mRNAwith single-transcript sensitivity, the
SNR is the limiting factor. The MS2 technology amplifies
the signal of mRNA by multimerizing the MS2-binding sites
and increasing the number of FPs bound to an individual
mRNA. Another way to increase the SNR is to reduce the
background. The background, besides the cellular autofluor-
escence, results from the free unbound CP-FP. It is known
that coat proteins must dimerize before they can bind to
their respective RNA stem loops. At a certain concentration
of coat protein, the fraction of dimer depends on the disso-
ciation constant KdKK . By creating an intramolecular dimer, we
eliminate the intermolecular dimerization process and
enable all tdCPs to bind directly to their targets. As a result,
we can express the tdCP-FP at low concentrations and still
label the mRNA efficiently. For example, if the total
MCP-FP concentration is 50 nM, the concentration of the
dimer would be 4 nM, assuming that the dimerization
KdKK ¼ 410 nM. If we further assume that the dimer binds
to the stem loop with KdKK ¼ 5 nM in cells (39), only 40%
of the stem loops will be occupied and the SNR of mRNA
will be 1.4. However, if a cell has 50 nM tdMCP-FP, 90%
of the stem loops will be labeled and the SNR of mRNA
will be 3. If we have two EGFPs linked to the tandem dimer
(tdMCP-tdFP), the SNR will increase to 4.2, a threefold
increase. Experimentally, if the SNR of a particle is too
low, it will not be detected. As demonstrated in Fig. 3 C,
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FIGURE 4 FFS measurements of endogenous b-actin mRNA. (A(( ) Diffu-

sion constant of b-actin mRNA in the cytoplasm and nucleus. MBS-MEF

was infected with lentivirus to stably express tdMCP-EGFP. First, the

MBS-MEF cell was measured in cytoplasm for 3 min. The autocorrelation

function was fit with a two-species diffusion model (Eq. 3; see Fig. S2 for

fit) and the mRNA diffusion constant was measured. Second, to measure the

diffusion property of mRNA in the nucleus, MBS-MEF cells were stimu-

lated with 20% serum after serum starvation overnight. FFS measurements

were conducted in the nucleus immediately after serum stimulation. The

photon counting traces were split into 5-min segments. The autocorrelation

curves were calculated from the segments and fit to Eq. 3 to obtain the diffu-

sion constant of mRNA. The scatter plot of the diffusion constants of

b-actin mRNA is shown. In the cytoplasm, the diffusion constant of b-actin

mRNA ranges from 0.15 to 0.74 mm2/s, with an average of 0.35 mm2/s. The

diffusion constant of mRNA in the nucleus is larger than in cytoplasm, with

an average of 0.72 mm2/s. (B) Concentration of b-actin in cytoplasm. The

MBS-MEF cell was measured for 3 min in cytoplasm. The data are fit by

a two-species TIFCA model, which provides the concentration of b-actin

mRNA. The histogram of mRNA concentration is plotted. In the inset,

the scatterplot of the concentration is also shown. The concentration ranges

from 1 to 30 nM, with an average of 11 nM. (C) The MBS-MEF was serum-

stimulated as described for panel A. The data were subjected to a two-

species TIFCA fit, and the concentration of b-actin mRNA is plotted as

a function of time. Each dotted curve represents a measurement of a single

cell. The average response of these cells is plotted as solid lines.
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with tdMCP-FP labeling, the total number of mRNAs de-
tected does not depend on the expression of coat proteins.
However, MCP-FP-labeled mRNA depends on the concen-
tration of coat proteins. Therefore, tdCP is more suitable
for quantitative counting experiments. Furthermore, tdCP
readily saturated the binding sites on an mRNA and resulted
in a uniform mRNA brightness, as demonstrated in Fig. 2.
This is particularly advantageous for quantifying the
number of transcripts at the transcription site.

Combining two coat proteins into a single peptide
provides additional advantages. For example, in some appli-
cations the coat protein is used to tether the target protein
onto RNA (40). The dimerization of coat protein forces
the dimerization of the target protein, which might introduce
undesirable side effects. The pseudo tandem dimer is a single
peptide and effectively behaves as a monomer, which will
not cause an undesired oligomerization of the fusion
protein. There is, however, a potential drawback of the
tandem dimer. Because each tandem dimer is fused to one
FP, the maximum number of FPs labeling one mRNA will
be reduced to half that of the true dimer. Nevertheless, there
is an easy solution for this problem: one can fuse two FPs to
the tandem dimer. Preliminary data show that the construct
tdMCP-tdEGFP labels mRNA as efficiently as tdMCP-
EGFP, but with the additional advantage of being brighter.

Quantitative and sensitive fluorescence fluctuation spec-
troscopy combined with specific labeling of mRNA
provides unique information that is unattainable otherwise.
By performing an FFS brightness analysis, we determined
the number of CP dimers on the mRNA. For mRNA labeled
with 24xPBS, we recovered the expected maximum
occupancy number for both tdPCP and PCP. Previously,
brightness has been used to measure unknown supramolec-
ular complexes, such as the copy number of the coat
protein in viral-like particles (41). Our results provide the
first measurement, to our knowledge, of experimentally
controlled copy number, which further establishes the valid-
ity of the brightness analysis for supramolecular complexes.
For mRNA labeled with 24xMBS, our data show that the
maximum occupancy number is far below 24. This is
consistent with the fluorescence imaging data. The PP7-
labeled mRNA is much brighter and has a better SNR
than MS2 mRNA. We constructed different MBS constructs
by varying the stem length and the linker between the stem
loops. The occupation numbers of these mRNAs did not
change substantially within experimental error.

We applied FFS to study endogenous b-actin mRNA. As
a result, the concentration of b-actin mRNA was measured
to be ~10 nM and varied between 1 and 30 nM. Another
metric that we are able to determine is the diffusion constant
in both cytoplasm and nucleoplasm. The average value of
the diffusion constant in cytoplasm and nucleoplasm is
0.35 mm2/s and 0.72 mm2/s, respectively. Previous studies
obtained mRNA diffusion constants between 0.04 mm2/s
(42) and 1.3 mm2/s (11) in nucleoplasm by single-particle

tracking, depending on the exposure time and tracking algo-
rithm used. FCS effectively measures an average diffusion
constant of many mRNAs and is closer to the recent
measurements obtained with single-particle tracking (11).
To further investigate the diffusion property of mRNA in
the cytoplasm, we constructed mRNAs with different
lengths, as shown in Fig. S3 A. All three mRNAs have
the same coding region of CFP. In the 30 UTR, 24xPP7,
24xPP7-24xMS2, or 6xPP7 were inserted. Each of these
mRNAs was expressed in U2OS cells together with
tdPCP-EGFP. The diffusion constants of the mRNAs were
measured by FCS and plotted in Fig. S3 B. Although
CFP-24xPP7-24xMS2 has 1000 more nucleotides than
CFP-24xPP7, their diffusion times are the same within
experimental error. The diffusion constant of CFP-6xPP7
is slightly larger than that of CFP-24xPP7.

To summarize, we have established methods for obtain-
ing absolute measurements of specifically labeled endoge-
nous and exogenous mRNAs using FFS. We created
a single-chain tandem coat protein dimer that labels
mRNA uniformly with increased SNR. Such a careful anal-
ysis of the kinetics of the two aptamers binding to their
respective coat proteins is a requisite for developing
a two-color intra- or intermolecular labeling scheme for
RNA. This will prove to be an important technology for
measuring the single-molecule kinetics of mRNA metabo-
lism, including synthesis, processing, export, translation,
and degradation. Another powerful extension of this study
is dual-color FFS. Once we have the ability to label an
RNA-binding protein of interest with a different color,
dual-color FFS promises to provide information about the
interaction between protein and mRNA in precise cellular
locations.
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Protein Folding Is Mechanistically Robust

Jeffrey K. Weber and Vijay S. Pande*
Department of Chemistry, Stanford University, Stanford, California

ABSTRACT Markov state models (MSMs) have proven to be useful tools in simulating large and slowly-relaxing biological
systems like proteins. MSMs model proteins through dynamics on a discrete-state energy landscape, allowing molecules to
effectively sample large regions of phase space. In this work, we use aspects of MSMs to ask: is protein folding mechanistically
robust? We first provide a definition of mechanism in the context of Markovian models, and we later use perturbation theory and
the concept of parametric sloppiness to show that parts of the MSM eigenspectrum are resistant to perturbation. We introduce
a new, to our knowledge, Bayesian metric by which eigenspectrum robustness can be evaluated, and we discuss the implica-
tions of mechanistic robustness and possible new applications of MSMs to understanding biophysical phenomena.

INTRODUCTION

Simulations have reached a level at which one can target
molecular phenomena on timescales from microseconds to
milliseconds (1,2) with atomistically detailed models.
However, how accurate are the predictions that come from
these models? As any model used is an approximation to
reality, a key question must always be addressed: how robust
are model properties to errors in the model, and how can one
predict what properties might be robust in a given system?

To address these questions in the context of biomolecular
simulation, we propose to harness efforts directed at
deriving meaningful many-state models of protein folding
dynamics. Advances in computational models have made
folding simulations possible at vastly longer timescales
than were previously reasonable (3–6). Discrete-time,
discrete-space Markov state models (MSMs), which propa-
gate a probability distribution using left multiplication on
a transition matrix, have shown particular promise for simu-
lating protein folding processes.

After grouping structures into metastable microstates,
MSMs capture the rare transitions between a protein’s local
free energy wells. MSMs offer a statistical approach to
simulation: instead of relying on single trajectories, MSMs
simulate ensemble dynamics with a state population proba-
bility vector (7,8). Recent millisecond-timescale simula-
tions of the 39-residue protein NTL9 (1) and an 80-
residue fragment of the l-repressor protein (2) demonstrate
the ability of MSMs to model the large, slowly relaxing
systems that are present targets in protein folding research.

Although protein folding mechanisms are intellectually
interesting in their own right, the ability to understand
folding mechanisms also has implications for studying
processes like catalysis, inhibition, and allostery. A number
of recent examples in the literature show that folding
mechanism (through transitions to intermediate states) can

play an important role in mediating biological processes
(9,10).

Proteins are good examples of biological systems that
demand robustness to changes in environmental parameters.
Robustness in folding mechanism modulates the kinetically
dependent processes in catalysis, inhibition, and regulation,
which proceed in ordered steps, and moderates harmful
phenomena like misfolding and aggregation (11). Aspects
of this robustness have been well studied and are substanti-
ated by experiments. A protein can reach its native state
under a range of physical and chemical conditions, and
systematic point mutations often have little impact on
a protein’s ability to find its final, functional structure
(12–14). However, it is unclear where this robustness
ends: which properties are most robust to perturbations,
and which are the most vulnerable?

Beyond general questions concerning the robustness of
protein folding mechanisms, we also aim to gauge the accu-
racy of MSMs constructed from simulated folding trajecto-
ries. Given the general robustness seen in real protein
ensembles, we would hope to observe similar properties
in the data derived from molecular dynamics (MD) simula-
tions. However, errors due to discretization (in space and
time) and finite sampling are inevitable and difficult to
quantify (11). As a telling example, one might need to mini-
mize the uncertainties of 100,000,000 parameters to create
an informative model for a 10,000 state system (15). If the
robustness of protein folding is any indicator, though, opti-
mization of model parameters may be less important than
previously thought.

To investigate the possibility of this robust behavior, we
use a Hessian-based theory called parametric sloppiness
(16–18). In general, biological systems have demonstrated
a tendency to show a particular sloppy behavior in the
face of parametric perturbation. Here, sloppiness describes
the global behavior of a biological system with respect to
local changes in environment. A sloppy system is insensitive
to (perhaps even drastic) perturbations in the majority of its

Submitted July 27, 2011, and accepted for publication January 12, 2012.

*Correspondence: pande@stanford.edu

Editor: Gerhard Hummer.

� 2012 by the Biophysical Society

0006-3495/12/02/0859/9 $2.00 doi: 10.1016/j.bpj.2012.01.028

Biophysical Journal Volume 102 February 2012 859–867 859



defining parameters, varying only with changes on a few
stiff coordinates (16,17). This concept of sloppiness is
related to system robustness: systems with sloppy sensitiv-
ities are invariant to many permutations in environmental
conditions.

Sloppy behavior is particularly prominent in complex
biological systems, where the accuracy of an ultimate result
is crucial, but associated kinetic pathways can be flexible.
Previous work in this area has shown sloppy behavior in
processes ranging from the Drosophila circadian rhythm
to rat growth-factor signaling (16–18). For proteins, changes
in sequence and environment that are inconsequential can be
related to sloppy deviations in parameter space. As events
that induce phenomena such as protein misfolding are few
and difficult to detect, these processes can be associated
with changes in stiff parameters under this framework.

Although this theory of sloppiness is useful, it is not intu-
itive from a physical standpoint. Accordingly, we preface
our study with a discussion of eigenspectrum perturbation
theory and its relation to sloppiness and sensitivity. We
then use this perturbation theory and sloppiness theory to
investigate MSM observable robustness to transition proba-
bility perturbation. We also develop a quantitative Bayesian
metric by which robustness can be evaluated, and we discuss
implications such robustness holds for applications of
MSMs to biophysical phenomena.

METHODOLOGY

Exploring mechanism in an MSM context

A great challenge in the field of protein folding lies in understanding

holistic folding mechanisms. Although determination of properties like

folding rates and native-state structures has become common practice in

both experiment and simulation, studies of mechanism are less established.

Phi-value analysis, which extracts kinetic information using site-specific

mutagenesis, is often used by experimentalists to study folding mecha-

nisms. Although phi-value analysis has provided great insight into many

systems, it still suffers from the imprecise meaning of intermediate phi-

values and the obvious limitation of trying to extract kinetic information

from thermodynamic data (19–21). Deriving mechanistic information

from pure MD simulations also presents challenges due to difficulties in

analysis and the existence of heterogenous folding pathways. In the case

of simulation, however, one might look for MSMs to provide a means for

extracting mechanistic information from MD simulations.

If we want to explore robustness in mechanistic properties derived from

simulation, we first need to consider how mechanism should be defined in

an MSM context. On first thought, one might determine that a protein’s

folding trajectory as seen in MD simulations represents its folding mecha-

nism. However, we argue that this view of mechanism is overly restrictive:

individuals within an ensemble experience different state-to-state transition

sequences in the folding process. Although the MSM transition matrix

defines which trajectories are possible, it also does not provide a clear

picture of which pathways the ensemble prefers over short and long periods

of time.

The eigenspectrum of the MSM transition matrix, however, provides

both kinetic and thermodynamic information about the ensemble. With

units of probability density, the transition matrix eigenvectors represent

the normal modes of time evolution in the system. The stationary distribu-

tion, the eigenvector with unit eigenvalue, describes the equilibrium popu-

lations in the ensemble. The other eigenvectors, with subunit eigenvalues,

describe changes in the system’s population distribution at timescales set

by their respective eigenvalues.

An MSMs probability distribution vector at any given timestep n has the

nice property of being propagated by transition matrix eigenvalues and

eigenvectors. This relationship is described by a simple equation involving

the initial distribution vector pð0Þ:

pðnÞf
XM
i¼ 1

lni
	
pð0Þ; gi



ei; (1)

where pðnÞ represents the system’s nth probability distribution vector, li
denotes an eigenvalue of the M � M transition matrix, and g and e are

the corresponding right and left eigenvectors of the transition matrix,

respectively (11). The parenthetical ðnÞ is used to denote a discrete time

index, whereas an n without parentheses indicates an exponent (as in the

case of lni ). Here, and below, the angle brackets are used to designate

a dot product between the enclosed vectors: hu; vi ¼Piuivi.

The previous expression describes how an arbitrary population distribu-

tion converges to the equilibrium distribution over time. As the number of

timesteps n becomes large, all subunit eigenvalues (through the term ln) and

their eigenvectors decay to zero, and eventually only the stationary distribu-

tion multiplied by the unit eigenvalue remains.

Relating mechanism to an MSM eigenspectrum offers advantages over

the alternatives that were previously discussed. The eigenvector decompo-

sition method provides details about how entire probability distributions

change, allowing for an idea of mechanism on an ensemble level. Large

eigenvector entries represent states that are important to density transfer

on the relaxation timescale of an associated eigenvalue. One can inspect

the set of eigenvectors to find which individual states are mechanistically

relevant at both fast and slow timescales. Information about trajectory

(which folding pathways are most probable) and end result (how the state

probability distribution converges to a stationary distribution) are intrinsic

to the eigenspectrum.

Together, we extend, trajectory and end result define the essential parts of

a folding mechanism. As such, we suggest that an MSM mechanism be

defined in the context of eigenvector decompositions. To investigate mech-

anistic properties of MSMs, one should inspect the signs and magnitudes of

transition matrix eigenvector elements for the eigenvalues that describe

a given process. Furthermore, when one considers a folding mechanism,

one is most interested in learning the important long timescale pathways

between unfolded states and the native state. In MSMs, these slow

processes are described by the eigenvectors with the largest eigenvalues.

Therefore, the most salient information about folding mechanism can be ex-

tracted from eigenvectors that describe the system’s long timescales.

To provide the reader with some intuition about how eigenvalues and

eigenvectors can be related to mechanism, we provide a toy MSM example

illustrated in Fig. 1 and Fig. 2. Fig. 1 shows a simple one-dimensional

potential energy surface and its corresponding continuous probability distri-

bution. To build an MSM on the toy surface, we discretize the potential in

a natural manner wherein state boundaries are placed on the barriers

between the wells in the surface. We also assume the potential is truly

one-dimensional, i.e., transitions can only occur between neighboring

wells.

Fig. 2 shows the transition matrix eigenvalue spectrum and selected

eigenvectors for the nine-state MSM constructed on our toy potential. State

assignments map directly onto the partition: the eigenvector components at

left correspond to the states on the left side of the potential, etc. To make

mechanistic assertions about dynamics on the surface, we simply need to

inspect the magnitudes of eigenvector components. Each eigenvector

component represents the relative flux into (if the component is positive)

or out of (if the component is negative) the given state at the eigenvalue’s

timescale.

As seen in the top eigenvector (l ¼ 0:988), the system’s slowest mode

describes the transfer of the population from the right side of the surface
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to the left side. In the system’s second slowest mode (l ¼ 0:875, middle

eigenvector), probability density moves between the wells on the left side

of the potential. In the third, high frequency eigenvector (l ¼ 0:385, near

the lag time rate), probability density is transferred from the shallow wells

on the barrier to the system’s most populated state.

When considering a folding mechanism, the system’s two slowest modes

provide the richest mechanistic insight. In an analogy to protein folding, the

wells on the right side of the potential might represent the unfolded basin,

whereas the state furthest left might represent a native-side intermediate. As

such, the first eigenvector shows how population is transferred from the

unfolded basin to the native basin at the folding timescale, and which states

are important in that transfer; the second eigenvector shows how folding

might proceed from a highly populated intermediate and the native state

on a relatively slow timescale.

Although the fast eigenvector does provide information about how pop-

ulation descends the native-side barrier, one is presumably less interested in

the dynamics between the highly transient states that eigenvector describes.

We thus argue that when studying folding mechanism, the slow eigenvec-

tors of an MSM are of fundamental interest.

Perturbation theory framework

With a working definition of folding mechanism now in hand, we can now

explore whether or not these mechanisms are robust to perturbation. Before

we introduce the Hessian-based method used for the bulk of this study, we

will first lay out a simpler method for robustness evaluation that has roots in

physics. This formalism is similar to the more statistically rigorous treat-

ment used in later sections and can be used to draw parallels between phys-

ical and statistical methods.

We have already noted that perturbing the interactions of a protein is not

new to the field of protein folding. Phi-value analysis (19–21) examines the

rates of protein folding and unfolding when minor perturbations (e.g., point

mutatations) are made to the protein experimentally. The fundamental

assumption of this procedure is that minimal perturbations can probe the

folding mechanism without altering it. However, it is natural to ask: what

size of perturbation is small enough, and how can one build a framework

for understanding these perturbations?

Below, we present a simple framework for understanding perturbations,

building upon previous work in examining perturbations to a Hamiltonian

in quantum mechanics. A popular method for approximating solutions to

the Schrodinger equation involves splitting the system Hamiltonian into

zeroth- and higher-order parts with expansion parameter x:

H ¼ H0 þ xH0 þ x2H00.: (2)

If the eigenvalue problem for the zeroth-order Hamiltonian can be solved

exactly, corrections to the eigenvalues and eigenvectors based on the per-

turbed Hamiltonian can be calculated with the well-known eigenspectrum

perturbation theory (22).

As in the quantum mechanical problem, an MSM transition matrix could

also be augmented by a perturbation operator. Suppose we would like to

calculate the impact of a random perturbation on the eigenspectrum of

the transition matrix. We could define a perturbed transition matrix T (to

first order) such that

TzT0 þ xT0; (3)

whereT0 is the original transition matrix andT0 is a matrix of random noise

under the constraint that the sum T0 þ xT0 is row normalized. The first-

order correction due to noise, l0m, for each eigenvalue l0m of the transition

matrix is given by the dot product

l0m ¼ 	
e0m; e

0
mT

0
; (4)

where e0m is the mth left eigenvector of the zeroth-order transition matrix

(22). Corrected left eigenvectors are given by the formula

em ¼ e0m þ
X
jsm

D
e0je ; e0mT

0
E

l0m � l0jl
e0je : (5)

Using these corrections due to perturbation, one could gauge the impact of

a random noise (or a more systematic) change in a transition matrix on its

eigenspectrum. We later apply this perturbation theory to analyze the

robustness of eigenvalues for a villin transition matrix. Fig. 3 shows the

eigenvalue spectrum for this system. As with the toy model, the villin model

has a few slow eigenvalues (above 0:5) that should be important in

analyzing folding mechanism.

In performing perturbation theory, we carry out a procedure that is con-

ceptually not unlike that of phi-value analysis.We perform a small perturba-

tion on the system (with added noise to the transition matrix analogous to

a point mutation), and we analyze the impact that perturbation has on the

mechanism (with differences in the eigenvalue spectrum analogous to free

energy differences). Noise-like perturbations, of course, are unrelated to

pointmutations, but the twomethods sharemany of the same ideas for inves-

tigating mechanistic properties. As in phi-value analysis, which elements of

an MSM can we change without fundamentally altering the dynamics?

Need for a new framework

The method more extensively used in this study is similar to a classical

perturbation theory. We perturb a transition matrix with noise, calculate

FIGURE 2 Eigenvalue spectrum and selected eigenvectors from the

MSM built on the toy potential seen in Fig. 1.

FIGURE 1 Top: Toy one-dimensional potential energy surface used to

illustrate the role transition matrix eigenvectors play in describing mecha-

nism. Vertical lines and shading indicate a natural partitioning of space

wherein barriers divide states. Bottom: Probability distribution correspond-

ing the toy potential energy surface with discretization.
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the corrected eigenspectrum, and compare that eigenspectrum to the orig-

inal. We decide to use an alternative method for two reasons. First, we

would like to gauge the rate of change (called the sensitivity) in an

eigenvalue or eigenvector with respect to the magnitude of perturbation.

Furthermore, we would like to know this eigenspectrum sensitivity for

each individual parameter in the model. These desires are not easily ful-

filled with analytical perturbation theory. This work’s method, drawn

from the literature and tested on biological models, is designed to estimate

such a rate of change (16–18).

Second, sophisticated theory for error propagation in MSMs has been

developed using a sensitivity-based analysis (23,24). These methods use

Bayesian schemes to estimate uncertainty based on the available data.

The nature of the sensitivities used to estimate such errors, however, has

never been well characterized, and it would be useful to gain intuition about

the relative magnitudes of these eigenspectrum sensitivities in recently con-

structed MSMs. Sloppiness-based techniques, as discussed below, provide

an avenue to do so.

Sloppiness framework

In developing this more rigorous method for sensitivity analysis, we draw

inspiration from theories first used in statistics and computer science.

Hessian-based sensitivity studies are common in the statistical literature

(25,26). These methods share the characteristic of calculating the Hessian

(second-derivative) matrix of a particular function that gauges a model’s

dependence on a set of parameters. The eigenvalues of this Hessian matrix

can then be used to estimate an observable’s sensitivity to perturbation.

Here, we adopt the notation and language of sloppiness used in recent

Hessian-based sensitivity studies on systems biology models (16–18).

To investigate sloppiness in MSM transition probabilities, we start with

the so-called model parameter cost function on the transition probability

matrix. Given the perturbation of a certain system parameter, the cost func-

tion returns the induced sum-squared deviation in a dependent observable.

In our case, we define a parameter to be a transition matrix element and an

observable to be an eigenvalue or eigenvector. Adapted from the literature

(16–18), the cost function CðTÞ is defined as

CðTÞ ¼ 1

N2

X
i

X
j

 XN
k¼ 1

�
ek
�
p
�� �

ij

�� ek
�
p
��

ij

��2!
; (6)

where T is the N � N transition matrix, e is a left eigenvector of that

matrix, pij is an individual transition probability defined by the model,

p�ij is a continuous variable representing a perturbation of pij, and ekðpðð �
ijÞ

represents an eigenvector entry as a function of p�ij (16–18). To quantify

the sensitivity of a model to changes in individual parameters, we use the

concept of the sensitivity eigenvalue, lsens, of the cost function Hessian.

For simplicity, the Hessian of CðTÞ is constructed as a diagonal matrix.

Accordingly, each sensitivity eigenvalue is merely a Hessian matrix

element evaluated at its corresponding parameter pij:

lsens
�
p
��

ij¼ t

� ¼ Httðpðð tÞ ¼ v2CðTÞ
vpv 2

t

ðpðð tÞ: (7)

The sensitivity spectrum of the transition matrix, generated by plotting the

sensitivities of all transition probabilities, gives a qualitative estimate of

sloppy behavior, wherein a sensitivity spectrum that spans many orders

of magnitude is said to indicate sloppiness (16). We should note that the

functions ekðpðð �
ijÞ lack an easily derived analytical form. In this study,

such relations were determined by calculating eigenvectors at increments

of p�ij and fitting the numerical relationships ekðpðð �
ijÞ to quartic polynomials.

Although the range of a sensitivity spectrum provides an intuitive esti-

mate of sloppiness, a more quantitative metric would allow for better

comparison of robustness within a given set of observables. A useful metric

can be developed from individual terms in the cost function. We use

a Bayesian approach to define, for a small perturbation, the expected devi-

ation for an observable e:

hdðeÞi ¼ N2ðDpD Þ2
X
i

X
j

�
UiP
mðUmU Þ

�
lsens

�
p
��

ij

�
; (8)

where DpD represents the magnitude of a small transition probability pertur-

bation and each UiUU represents the relative uncertainty in a row of the tran-

sition matrix. A derivation for this equation is included in the Supporting

Material (23,24).

The expected deviation quantifies robustness via a direct cost function

variation estimate: for an observable e, hdðeÞi represents a weighted average
deviation due to perturbation over all components of the cost function

CðTÞ.
Before moving on to our results, we should note that under both pertur-

bation schemes the perturbed transition matrix will violate the detailed

balance condition pijpi ¼ pjip pjp . Such matrices thus describe only near-

equilibrium steady states of the perturbed system. As a physical analogy,

our perturbation schemes do not represent reversible changes in activation

barrier heights, but rather correspond to nonequilibrium experiments in

which energy is added to break detailed balance. These nonequilibrium

results are then compared among our observables of interest.

RESULTS AND DISCUSSION

Perturbation theory framework

As an instructive example, we first use classical perturba-
tion theory to gauge robustness in eigenvalues of the villin

FIGURE 3 Transition matrix eigenvalue spectrum for an MSM of the

villin headpiece domain in explicit solvent. This eigenvalue spectrum is

analyzed in the Perturbation theory section of this work.
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MSM transition matrix. The stationary eigenvalue will not
change with any transition matrix perturbation, because
the unit eigenvalue is a property of all regular stochastic
matrices. All other eigenvalues, however, do depend on
the particular values of transition matrix elements. To
measure how much these kinetic eigenvalues change upon
perturbation, we perturb the transition matrix and calculate
the first-order eigenvalue correction using Eq. 4. Note that,
in this case, calculated eigenvalue corrections are exact, as
the perturbed transition matrix is itself exactly first order in
nature.

In this case, the villin count matrix was perturbed by
additive Gaussian noise (m ¼ 5, s ¼ 3) to 1% of matrix
elements, constrained to positivity, and then renormalized
to yield a perturbed transition matrix. To find the matrix
T0 in Eq. 4, we subtract the perturbed matrix from the orig-
inal matrix. Mean eigenvalue corrections were computed
over 1000 random perturbations of the kind just described.
Fig. S1 illustrates the relationship between mean eigenvalue
correction and eigenvalue relaxation timescale. The eigen-
values at long timescales (i.e., eigenvalues with large
magnitudes) require quite small corrections due to the
random perturbation, whereas the eigenvalues at shorter
timescales (corresponding to high frequency modes in the
system) change to a greater extent when the transition
matrix is perturbed.

We should note that while large eigenvalues change less
when perturbed than their small counterparts, the relaxation
timescales derived from these eigenvalues exhibit the oppo-
site trend. The reason for this discrepancy arises from the
nonlinear way in which physical timescales are calculated:
a relaxation timescale is proportional to one over the loga-
rithm of its corresponding eigenvalue (see Fig. S1 caption).
Because the system’s largest eigenvalues are near a singu-
larity in the timescale function, even modest changes in
those eigenvalues translate to large changes in timescale.
Thus, whereas the largest eigenvalues (z0:99) change
only by a few parts per thousand upon perturbation, their
timescales still change by ~25% (z150 ns). Fig. S2 shows
the mapping between fractional timescale correction and
relaxation timescale for all eigenvalues being considered.

Because slow timescales are often those most important
for model interpretation, this intrinsic deficit in slow time-
scale robustness should be considered in future MSM anal-
yses. However, we maintain that the relatively small
deviations in large eigenvalues still allow for meaningful
analysis. A 25% change in timescale, while significant,
does not drastically alter the physical interpretation of
a relaxation process. If the largest eigenvalues changed to
the extent that many smaller eigenvalues change, the longest
timescales could deviate by an order of magnitude or more,
and any conclusions based on those data would be suspect.
The fact that the slow timescales do not change so dramat-
ically is comforting from the standpoint of ongoing Markov
state modeling.

Sloppiness framework

Having demonstrated the use of perturbation theory in anal-
ysis of transition matrix eigenvalues, we now apply the more
sophisticated sloppiness theory in analyzing the eigenvec-
tors of MSMs. Transition matrix eigenvector sensitivities
were analyzed for MSMs of Fs-peptide (in explicit solvent,
lumped to 19 macrostates) and the villin headpiece domain
(in both explicit and implicit solvent, lumped to 500 macro-
states) (24,27,28).

For a preliminary illustration of sensitivity eigenvalues,
Fig. 4 shows stationary distribution sensitivities for all
transition probability parameters of the Fs-peptide MSM.
Clearly, the magnitudes of sensitivities vary greatly from
state to state, suggesting that the stationary eigenvector is
much more sensitive to some states than it is to others.
The largest sensitivities often, though not always, corre-
spond to parameters leading to the model’s most populated
states (States 13 and 14) and those along the matrix diag-
onal. In this case, no sensitivities are particularly large (at
most ~1� 10�3), indicating the distribution will not change
drastically upon perturbation.

The biophysical meaning of the transition matrix pertur-
bations carried out in this work requires some thought.
Given that transition probabilities are held constant over
the course of a simulation, these perturbations are unlike
the thermal fluctuations that cause Brownian motion,
because such fluctuations occur on ultrashort timescales.
Rather, time-independent perturbations are more like probes
present in a nonequilibrium experiment, or, with the
enforcement of detailed balance, equilibrium phenomena
like interactions with ligands or denaturant. Systematic
perturbations, and an analysis of how eigenvectors are
affected by these perturbations, might thus provide a means
of simulating such interesting processes.

The main purpose of this study, however, is to investigate
general mechanistic properties of MSMs. We first look
to eigenvector sensitivity spectra to provide a qualitative
picture of mechanistic robustness to perturbation: Fig. S3
shows the sensitivity spectra for three selected eigenvectors
of the villin implicit solvent model. Because the sensitivities
in each spectrum are spread quite evenly over many orders
of magnitude, the spectra meet our qualitative criterion
for sloppiness. It should be observed that sensitivities
near the maximum sensitivity eigenvalue are related to stiff
directions in parameter space, as changes in those parameters
cause the greatest relative changes in model behavior. For
the most part (as seen in all three spectra in Fig. S3), sensi-
tivity values are sparse near the maximum sensitivity eigen-
value, suggesting that stiff parameters are few in number.

Notably, the sensitivity spectrum for the stationary distri-
bution of the villin implicit solvent model (shown in Fig. S3)
spans nearly six more orders of magnitude than do the
spectra related to other eigenvectors. For the following anal-
ysis, suppose 10% of rows in villin’s transition matrix are
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perturbed by noise. Evaluating the stationary distribution
under our Bayesian robustness scheme (DpD ¼ 0:01;
N ¼ 50Þ, we see that the stationary distribution is three
orders of magnitude more robust to perturbation than the
rate eigenvectors: hdðpÞi ¼ 4:96� 10�4, hdðe; l ¼ :729Þi¼
0:10, hdðe, l ¼ :510Þi ¼ 0:12. A similar gap between
stationary and rate eigenvectors was seen in both of the
other models analyzed. However, the slow rate eigenvectors
are still robust under our metric: expected deviations on the
order of 0.1 are quite small in eigenvectors over all 500
components. It should also be noted that a transition proba-
bility perturbation of 0.01 is not insignificant: transition
matrix elements in these models often fall in the range of
0.001–0.05. As discussed below, the so-called slow eigen-
vectors of all three models were observed to be similarly
robust. We observe in general that the thermodynamic
observables of MSMs are much more robust to perturbation
than their kinetic counterparts. These data help to justify
previous observations that equilibrium properties converge
more quickly than dynamical ones under rapid conforma-
tional sampling (27).

In Fig. 5 and Fig. 6, we use our Bayesian metric on a
variety of spectra (again, with DpD ¼ 0:01) to compare
eigenvector robustness as a function of rate within the three
systems. Rate is defined as the inverse of an eigenvector’s
relaxation timescale at the model lag time tlag (tlag ¼ 10 ns
for villin, 2 ns for Fs-peptide), with trelax ¼ �tlag=ln l.
In each case, l is the eigenvalue of the transition matrix
corresponding to the eigenvector being analyzed (8).

All three plots show a similar increase in expected
deviation as eigenvector frequency increases up to (and in
the case of Fs-peptide, beyond) the relaxation timescale
rate k ¼ 1=trelax ns�1. In general, eigenvectors at each
system’s slowest timescales are 1.5 to 2 times more robust
than those near the lag time rate. Absolute robustness, as
measured here, appears to be roughly independent of system
size: although the villin MSM contains many more states
than does the model for Fs-peptide, the magnitudes of
deviations seen in Fig. 5 and Fig. 6 are comparable.

FIGURE 5 Expected deviation, hdðeÞi ðN ¼ 2; DpD ¼ 0:01Þ, versus rate

for eigenvectors of Fs-peptide. The expected deviation for the stationary

distribution corresponds to the point at zero rate, and N ¼ 2 was chosen

to represent 10% of states. For Fs-peptide, expected deviations in eigenvec-

tors increase loosely with increasing rate.

FIGURE 4 Sensitivity eigenvalue matrix for the

stationary distribution of the Fs-peptide transition

matrix. Indices on the right of the plot indicate

states from which a transition originates, whereas

indices on the left indicate where a transition

terminates. Though all sensitivities are relatively

small (%1 � 10�3), the largest sensitivities

often correspond to parameters that describe transi-

tions into highly populated states (i.e., States 13

and 14) and self-transition probabilities.
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This trend in robustness versus rate is pleasing from
a physical point of view. Changes in the transition matrix
divert the ensemble’s walk to pathways not described by
the original model. These diversions, one would expect,
might have a large impact on ensemble dynamics at
a system’s shortest timescales. We see that the transfer of
density between states at quite long timescales, however, is
less dependent on these high frequency trajectory diversions.
Indeed, in processes like protein self-assembly that occur
with continual environmental fluctuation, adaptivity over
long timescales is needed to ensure reproducible results.
Our data show that many protein folding MSM eigenvectors
exhibit a similar resistance to parametric perturbation.

To provide a specific example of mechanistic changes at
short and long timescales, Fig. 7 contains difference maps
for various left eigenvectors of a perturbed Fs-peptidemodel.
The Fs-peptide transition matrix was perturbed in a similar
fashion to that used for villin: counts were added to ~5%
of count matrix elements using Gaussian noise (m ¼ 5,
s ¼ 3). The matrix was then constrained to positivity and re-
normalized to yield a perturbed model. The difference maps
in Fig. 7 simply represent the difference between left eigen-
vectors of the perturbed model and those of the original
model with the indicated eigenvalues l (after perturbation).

A first observation drawn from Fig. 7 lies in the relative
magnitudes of eigenvector deviations: in agreement with
Fig. 5, the sum-squared deviations for faster eigenvectors
are much larger than those seen for slower eigenvectors.
With respect to gaining specific mechanistic insight, changes
in the slowest eigenvector (l ¼ 0.785, trelaxz8 ns) are rela-
tively uniform, with the exception of a small increase of flux
into State 18 and a small increase in flux out of State 4, both
intermediate states connected directly to the folded helix.

In the two eigenvectors at fast timescales, however,
significant changes in flux occur for a large percentage

of the states in the model. In the case of the intermediate
eigenvector (l ¼ 0:361, trelaxz2 ns), States 5 and 6 (both
intermediates connected to the native state) lose the most
population flux, whereas many other intermediate (directly
connected to the native state) and unfolded (not directly
connected with the native state) states gain flux. For the
fastest eigenvector (l ¼ 0:032, trelaxz0:6 ns), large losses
in flux occur for States 9 and 17, which are sparsely popu-
lated unfolded states not connected to the native state.

These observations together support our conclusions
about mechanistic robustness versus rate. The mechanistic
characteristics described by the slow eigenvectors change
very little, while fluxes in the faster eigenvectors change
drastically. Particularly, fluxes in and out of lowly populated
states (like State 17), which one would expect to have
little impact on the overall folding mechanism, can change
considerably at fast timescales but are damped out once
the longest timescale is reached.

CONCLUSION

We have shown that three representative protein folding
MSMs exhibit sloppy behavior with respect to their transi-
tion probability parameters. In general, the stationary and
slow components of the eigenspectrum incurred only small
deviations upon perturbation, whereas the high-frequency
eigenvalues and eigenvectors were less robust under our
framework. Especially near the lag time rate, eigenvalues
and eigenvectors experienced deviations more than twice
as large as those seen in slowly relaxing kinetic components.

With these conclusions about robustness in mind, we
would like to discuss the new implications for MSMs that
sloppiness holds.

FIGURE 7 Left eigenvector difference maps for a perturbed model of the

Fs-peptide. Quantities on the vertical axes are unitless and describe the

difference in flux into a state in the perturbed model relative to the original

model. As the maps indicate, the fluxes at long timescales are less affected

by perturbation. Dynamics into and out of states with low populations (e.g.,

State 9 and State 17) fluctuate largely at short timescales but are stable in

the slowest eigenvectors.

FIGURE 6 Expected deviation, hdðeÞi ðN ¼ 50; DpD ¼ 0:01Þ, versus rate
for eigenvectors of villin in explicit (open circles) and implicit (solid

circles) solvent. Again, the expected deviations for the stationary distribu-

tion are represented at zero rate. In both cases, expected deviation appears

to increase with increasing rate; the explicit model seems to be slightly

more robust at rates near the lag time rate of 0.1 ns.
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Implications for models derived from simulation

Every MSM eigenvector analyzed in this study demon-
strated sloppy characteristics. Although the degree of slop-
piness varied from vector to vector, sensitivities of every
observable spanned at least two orders of magnitude with
reasonable uniformity.

We would like to reiterate that the robust behavior we
report is not necessarily unique to models of protein folding.
Topologically, protein folding MSMs are networks that
contain many kinetically relevant but few thermodynami-
cally relevant states. It is likely that the reported eigenvector
robustness would be observed in any network sharing these
characteristics. The important conclusion here, however, is
that protein folding MSMs do exhibit this robustness to
perturbation. This means that parts of MSM transition
matrix eigenspectra (and observables that can be calculated
from them) are not highly sensitive to uncertainties in many
of the transition matrix elements themselves.

Although improvement in MSM accuracy is an ongoing
task, we can thus be comforted that even moderate uncer-
tainties in transition probabilities will have little impact on
parts of the transition matrix eigenspectrum. Such confi-
dence, however, comes with a few caveats. First, we have
emphasized that the slowly relaxing aspects of mechanism
are more robust to perturbation than the quickly relaxing
ones. Observations that are contingent on high-frequency
eigenvectors should be more closely scrutinized. Second,
it is clear the number of parameters with large uncertainties
still needs to be limited. Because transition probabilities
are coupled together, too many successive errors in
transition matrix elements could have drastic effects on
the quantitative predictions of a MSM. In particular, if
perturbations are large enough to substantially change the
slow eigenvalues (i.e., the important timescales) of the
model, a breakdown in mechanism will follow. Needless
to say, methods for reducing transition probability uncer-
tainties in MSMs remain intensely interesting subjects for
investigation.

One area in which perturbation might change mechanistic
properties resides in the choice of force field to be used in
MD simulation. Shaw et. al. (29) have shown that folding
mechanism can vary greatly depending on the force field
used: in particular, whereas variants of the AMBER force
field performed relatively consistently, discrepancies
between variants of the CHARMM force field were large.
Work on simulating the Fip35 WW domain has also raised
questions regarding the mechanistic predictions made with
the CHARMM force field (30).

Implications for interpreting biophysical
experiments

The perturbation of model parameters has connections to
concepts in protein folding biology that would be of general

interest to an experimentalist. In particular, are experimental
observations about protein folding robust? Although
experiments, of course, are not concerned with simulation-
specific perturbations like force field and space discretiza-
tion errors, analogous perturbations in environmental
conditions (temperature, pH, salt conditions, sequence
mutations, presence of other proteins, etc.) as well as statis-
tical uncertainty need to be considered in an experimental
setting. The robustness seen in protein folding simulations
predicts a similar robustness in the interpretation of protein
folding experiments, with analogous caveats as discussed
previously in the context of simulations. This is important
for the comparison of simulation to experiment, comparison
between experiments, and also for the interpretation of
the experimental data, because less robust aspects of the
system are most susceptible to small variations in experi-
mental conditions.

Our analysis can shed light on which elements one would
expect to be most robust. For instance, measurements of
equilibrium properties (e.g., through thermal or chemical
melting studies) are subject to perturbations in temperature
and salt conditions. Nevertheless, because the properties of
interest in these cases are stationary, an experimentalist
should be relatively confident that such perturbations have
little impact. In experiments that are time-resolved (from
nanoseconds to milliseconds) and at the single molecule
level, however, conclusions about kinetics and mechanism
should be tempered with considerations of perturbative
robustness. Elements of mechanism that occur on relatively
slow timescales might be trusted with some surety, but, as
with MSMs, conclusions based on high-frequency processes
must be more closely scrutinized.

Why can one say that protein folding
is mechanistically robust?

The title of this work is Protein Folding Is Mechanistically
Robust. One might ask the question, given that some parts of
the MSM eigenspectrum are not robust: is the title’s state-
ment justified?

Not all MSM observables are robust to perturbation. We
should note again, however, that the nonrobust elements
of MSM observables belong to fast parts of the transition
matrix eigenspectrum. As indicated earlier, one’s primary
interest in studying folding protein mechanisms resides in
understanding the important pathways that occur on the
folding timescale. The slow eigenvectors contain this long
timescale information and thus contain the most important
mechanistic information. Because the slow eigenvectors
changed very little upon perturbation, we conclude that
protein folding mechanisms, in the context of MSMs, are
robust.

Even though folding robustness is an important concept
for experimentalists to consider, it has few applications
to actually solving problems in biology. Rather, it is
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nonrobustness in systems that fundamentally gives rise to
interesting behavior. The rare events that induce significant
conformational changes (related, using a sloppiness frame-
work, to the stiff parameters of a model) are the particular
focus of many biologists. The question as to which param-
eters in a model are the stiffest, thus, may prove to be
much more interesting than previously thought. Deter-
mining which parameters are stiff enough to change a
low-frequency eigenvector in an MSM, for instance, could
indicate which states are important in inducing a particular
population shift. Therefore, changes in these parameters
could simulate the binding of a ligand or substrate or
some perturbation in the cellular environment. This analysis
could have applications in conducting in-depth mechanistic
simulations of concepts like allostery, calalysis, and inhibi-
tion, topics that truly define contemporary biology.
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Determination of Membrane-Insertion Free Energies by Molecular
Dynamics Simulations

James Gumbart†* and Benoı̂t Roux†‡
†Biosciences Division, Argonne National Laboratory, Argonne, Illinois; and ‡Department of Biochemistry and Molecular Biology and Gordon
Center for Integrative Science, The University of Chicago, Chicago, Illinois

ABSTRACT The accurate prediction of membrane-insertion probability for arbitrary protein sequences is a critical challenge to
identifying membrane proteins and determining their folded structures. Although algorithms based on sequence statistics have
had moderate success, a complete understanding of the energetic factors that drive the insertion of membrane proteins is
essential to thoroughly meeting this challenge. In the last few years, numerous attempts to define a free-energy scale for
amino-acid insertion have been made, yet disagreement between most experimental and theoretical scales persists. However,
for a recently resolved water-to-bilayer scale, it is found that molecular dynamics simulations that carefully mimic the conditions
of the experiment can reproduce experimental free energies, even when using the same force field as previous computational
studies that were cited as evidence of this disagreement. Therefore, it is suggested that experimental and simulation-based
scales can both be accurate and that discrepancies stem from disparities in the microscopic processes being considered rather
than methodological errors. Furthermore, these disparities make the development of a single universally applicable membrane-
insertion free energy scale difficult.

INTRODUCTION

The spontaneous partitioning of some amino acids into lipid
bilayers underlies the folding and function of all membrane
proteins. Knowledge of the energetics of this process is
expected to provide the fundamental physico-chemical
basis for understanding numerous structural and functional
aspects of membrane proteins. However, although it has
long been accepted that the residues of membrane proteins
loosely follow some hydrophobicity pattern (1), attempts
at establishing a definitive free energy scale for the
membrane insertion of amino acids have met with varied
success. Choosing the optimal membrane-mimicking bulk
solvent to measure transfer free energies is one part of the
problem. For example, empirical scales based on transfer
free energies of side-chain analogs between, e.g., water
and octanol (2) or water and cyclohexane (3), disagreed
with one another in magnitude, and which scale is best
remains unclear. More recently, a biological hydrophobicity
scale was determined using a cotranslational system. A
putative transmembrane (TM) segment was inserted into
the protein-conducting channel, the SecY/Sec61 translocon,
concomitant with the nascent protein’s synthesis, and glyco-
sylation was used to monitor the state of the system quanti-
tatively (4,5). Perhaps most surprising was the observation
of a low free energy cost associated with the presence of
a charged residue in the TM helix; according to the translo-
con experiments, the free energy cost to add one arginine in
a TM helix is ~2–3 kcal/mol (4,5). In contrast, molecular
dynamics (MD) computations predict free energies of

~14–17 kcal/mol for arginine (6–8). Such a large and mostly
unexplained disagreement created much confusion and
contributed to doubts regarding the accuracy of the force
field used in MD computations.

Despite the aforementioned doubts, it should be noted
that solvation free energies calculated from simulation are
generally in very good agreement with experimental values
for well-defined liquid phases (9–12). Therefore, it is
unlikely that errors in methodology or force field are solely
responsible for the large discrepancy between simulations
and experiments for membrane insertion (13). Rather, at
least in part, the large mismatch in free energies resulted
from comparing disparate processes. The majority of simu-
lation studies examining the free energy of membrane inser-
tion were predicated on the assumption of two idealized
end-states, in which the TM helix was either fully hydrated
or fully inserted into the bilayer. Although the translocon
measurements are clearly indicative of a thermodynamic
partitioning between two microscopic environments of
different polarity, it is unlikely that they actually report on
the transfer free energy between such idealized end-states
(14). The reality of membrane-protein insertion is far
more complex, with a variety of states of intermediate solva-
tion also possible (14). Reconsidering the molecular context
in which the translocon-assisted transfer free energies were
measured led to a more complete resolution of this problem
(15,16). Membrane insertion of a TM segment in the co-
translational system is believed to occur via a two-stage
process, the first being insertion from ribosome into the
channel and the second from the channel laterally into the
membrane (15,17). The first stage is extremely slow
(~1 residue/s) and irreversibly driven by the nascent chain’s
elongation for both membrane and secreted proteins.
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The second stage, however, has no energetic input and,
therefore, may represent the equilibrium process measured
experimentally. Free-energy perturbation (FEP) calculations
measuring the free energy for this process, transfer from
channel to membrane, demonstrated a notably improved
agreement with the experimental translocon scale compared
with prior computational investigations (15).

The ribosome-translocon-membrane system is exceed-
ingly complex, however, and is far from a simple testing
ground for force-field validation. Presumably, comparison
with a simpler water-to-bilayer (WTB) hydrophobicity scale
would yield a clearer view of the issues at hand. Such a scale
has been proposed recently by measuring the spontaneous
membrane insertion of the outer membrane phospholipase
A (OmpLA) under different conditions (18). Specifically,
a residue predicted to localize to the membrane’s center,
Ala210, was mutated to other amino acids, and the corre-
sponding change in free energy of insertion was determined.
Surprisingly, even for direct insertion from water to
membrane, the cost of placing one arginine inside the mem-
brane turned out to be quite low, at only 3.71 kcal/mol relative
to wild-type OmpLA (18), a value fairly similar to that
observed in the experimental translocon scale. Thus, the Om-
pLA-scale measurements seem to indicate that the WTB
transfer of one arginine is actually much smaller than pre-
dicted by atomic force fields, leading one to, once again,
question the accuracy of MD computations (18). However,
many of the specific microscopic factors underlying the Om-
pLA experiments have not yet been considered and it is diffi-
cult to ascertain the origin of the observed transfer free
energies. The relative simplicity of the OmpLA measure-
ments compared to the translocon-based ones offers a new
opportunity to examine the ability of simulations to quantita-
tively predict membrane-insertion free energies, albeit with
some details about the end states still unknown.

To clarify the molecular origins of the free energies in
the WTB scale, the insertion of OmpLA mutants into the
membrane was mimicked as closely as possible through the
use of FEP simulations (19). Among the aspects unique to
the OmpLA measurements, it is important to take into
consideration the use of the short lipid DLPC, which has
only 12 aliphatic carbons in each tail, and a pH of 3.8 (18).
In the FEP simulations, the insertion-free-energy difference
betweenAla210 and a given residue is determined by carrying
out the mutation in one direction in the membrane and the
opposite direction in water. Three representative residues,
a charged arginine (Arg), a hydrophobic leucine (Leu), and
a hydrophilic serine (Ser), are chosen for comparison, each
requiring 240 ns for a reliable determination of its insertion
free energy. Close agreement between the simulations and
the experimental values for the first two, Arg and Leu, is
found, whereas the cost for Ser insertion is slightly higher
in simulation. Additional calculations reveal the predomi-
nant contributor to the relatively low free energies in the
WTB scale is the extraordinarily thin DLPC membrane.

METHODS

System construction

Simulations of OmpLA began from the crystallographic structure of

OmpLA (PDB code 1QD5) (20). Protonation states for titratable residues

were assigned according to a pH of 3.8, matching experimental conditions,

using PropKa (21,22). Specifically, glutamate residues 25, 51, 60, 104, 105,

111, and 165 along with aspartate residues 125, 143, and 205, all solvent

exposed, were neutralized. The DLPC bilayer was constructed using the

CHARMM GUI Membrane Builder (http://www.charmm-gui.org/)

(23–25). Protein and membrane were combined using the visualization

and analysis program VMD (26), leaving the membrane with 100 lipids

in the upper leaflet and 95 in the lower leaflet. The resulting system was

solvated above and below and ionized with Naþ and Cl� ions to a concen-

tration of 308 mM. The final system size for OmpLA in the membrane is

63,000 atoms.

The system used for simulations of the pseudo-infinite poly-leucine helix

in a DLPC bilayer was prepared in a manner identical to that in Gumbart

et al. (15). Briefly, the helix contains 73 amino acids and was placed in

a solvated bilayer with Kþ and Cl� ions at a concentration of 1.0 M

surrounding it. The size for this system is 48,500 atoms. All Ca atoms of

the helix were restrained, thus maintaining the helix’s orientation and

structure. To prevent shifting of the membrane relative to the helix, the

center-of-mass of all phosphorus atoms in the membrane was restrained

along the z axis to the origin.

Simulation protocols

All equilibrium simulations were carried out in the NPT ensemble and

production simulations in the NPzAT ensemble, where N denotes the

number of particles, Pz is the normal pressure, A is the surface area, and

T is the temperature. Simulations were run using the molecular dynamics

program NAMD 2.8 (27) and the CHARMM force field (28–30). The

normal pressure and the temperature were fixed at 1 bar and 310 K, respec-

tively, employing the Langevin piston algorithm (31) and Langevin

dynamics with damping coefficient 1 ps–1. Periodic boundary conditions

were applied in all dimensions. Short-range Lennard-Jones and Coulombic

interactions were truncated smoothly by means of a 12 Å spherical cutoff

with a switching function applied beyond 10 Å. The particle-mesh Ewald

method (32) was employed to compute long-range electrostatic interac-

tions. A timestep of 2 fs was employed, with bonded interactions and

short-range forces calculated every timestep and long-range forces every

three timesteps. Covalent bonds involving hydrogen atoms were con-

strained to their equilibrium values.

Free-energy calculations

In a simulated alchemical transformation, the free energy separating two

states is calculated by slowly converting from one to the other through

creation and/or annihilation of specific components of the system,

controlled by a parameter l that runs from 0 to 1 (33). To prevent the occur-

rence of singularities at small values of l, a scaled-shifted soft-core poten-

tial was used for van der Waals interactions (34). For calculating DDG of

insertion of the residue-210 mutants of OmpLA relative to the Ala210

wild-type, FEP simulations were undertaken in which Ala210 is transformed

into an alternative residue in the two environments, water and membrane.

Similarly, for the transfer free energy of Arg on a polyL helix from water

to membrane, an Arg residue distant from the membrane was transformed

into Ala while concomitantly an Ala residue in the membrane center was

transformed into Arg. Each of the transformations was run in both the

forward (l from 0 to 1) and backward (l from 1 to 0) directions. The

transformations were subdivided into 50 windows and each was run for

0.6 ns of equilibration and 0.6 ns of data collection, giving 60 ns for the

full transformation. Thus, for the three residues on OmpLA and the polyL
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helix, along with initial equilibration simulations, a total of ~1 ms of

simulations were carried out. FEP simulations of the isolated residue and

of the seven-residue peptide in water were run for 4.5 ns in each direction.

Statistical analysis of the two directions for each FEP calculation was

performed by using the Bennett acceptance ratio (35) via the ParseFEP

plugin in VMD (26).

Membrane area

Because the packing of lipids may have a nonnegligible effect on the free

energy of insertion, the membrane area was carefully monitored. The

initially constructed OmpLA-DLPC system was equilibrated in stages

(36). Unrestrained equilibration of the membrane-protein system in the

NPT ensemble for 6 ns produced an area of ~83.5 � 83.5 Å2. With the

protein area estimated at 850 Å2, the area/lipid is 62.8 Å2 on average.

This is smaller than that from experimental measurements, which give, after

accounting for the difference in temperatures (310 K in simulation and

303 K in experiment), 65.1 Å2 (37). To correct for the slight underestima-

tion in area/lipid, the system’s area was increased to 85 � 85 Å2 and then

fixed for subsequent simulations, giving an area/lipid of ~65.4 Å2.

Corrections to the calculated free energy

For nonneutral systems using PME electrostatics, a self-interaction term

arises that must be accounted for in the free energy calculations. For two

systems of different charges, q1 and q0, the correction takes the form

Du ¼ 1

2
xEW
�
q21 � q20

�
; (1)

where x ¼ �2.837297/L// for a cubic lattice (38). For simulations involving

mutation of an Ala residue to Arg, q1¼ 1 and q0¼ 0. Corrections to the free

energy in four systems were determined and are detailed in Table S1 in the

Supporting Material.

An additional spurious self-interaction between the charged Arg residue

and its images in neighboring periodic cells also arises in the simulations

(6,39,40). However, because either water or, when in the membrane, the

water-filled OmpLA barrel, effectively shields the Arg’s charge over the

simulation box width, this term is expected to be negligible, and therefore

was ignored.

RESULTS

To determine the WTB insertion free energies computation-
ally, a thermodynamic cycle was first constructed, shown in
Fig. 1. This cycle connects the unassisted membrane inser-
tion of OmpLA to more computationally tractable alchem-
ical transformations, similar to one used previously (15).
By closure of the cycle, the free-energy difference between
insertion of the wild-type OmpLA and of the Ala210 mutants
is given by

DDGOmpLA
aq:/DPLCðResÞ ¼ DGOmpLA

DLPC

�
Ala210/Res

�
� DGOmpLA

aq:

�
Ala210/Res

�
; (2)

where Res indicates the residue 210 point mutation. Thus,
two FEP calculations, one of the free-energy change of
Ala210 to Res in water and one in membrane, suffice to
determine the insertion cost of OmpLA mutants relative to
wild-type.

Insertion free-energies for Arg, Leu, and Ser

FEP simulations, each 60 ns, were carried out in both
forward (Ala / Res) and reverse (Res / Ala) directions
to improve statistical reliability (15,33); see Table S2 for
a full list of the simulations performed. Simulation condi-
tions were chosen to best mimic those in experiment,
including using an equilibrated DLPC bilayer (see
Methods). One factor, which was not explicitly controlled,
however, is the structure of OmpLA before membrane inser-
tion. Whether it is folded, unfolded, or somewhere in
between in water is unknown, and may be dependent on
the sequence. Therefore, three contexts for the purely
aqueous state of residue 210 of OmpLA are considered: as
part of the fully folded protein; as part of a seven-residue
strand, i.e., residues 207–213 of OmpLA; and as a single
isolated amino acid, thereby neglecting completely any
role of the rest of the protein (see Fig. S1 in the Supporting
Material). All insertion free energies, therefore, are given as
a range encompassing the three contexts; see Table 1 for
a complete list of values.

In the first tested case, Ala210 was mutated to Arg, a
residue with one of the most discrepant free energies
between computationally and experimentally determined
scales. Based on the FEP simulations and the cycle in
Fig. 1, along with a correction for the self-energy of nonneu-
tral systems using PME (see Methods), DDGOmpLA

aq:/DLPC (Arg)
is equal to 1.05–3.76 kcal/mol. The upper value, derived
from a fully folded aqueous state for OmpLA, is in excellent
agreement with the experimental value, denoted in Moon
and Fleming (18) as DDGo

w,l ¼ 3.71 kcal/mol. It is also
much lower than other direct water-to-membrane free-
energy costs determined from simulations, which range
from 10 to 17 kcal/mol (6–8,41). The insertion free energy
calculated from the other two aqueous states of Ala/Arg210

considered are even lower, suggesting that the relatively low

FIGURE 1 Thermodynamic cycle relating membrane-insertion (vertical

legs) with FEP calculations (horizontal legs) for arginine. OmpLA is shown

as ribbons and Ala/Arg210 is indicated at its center in a space-filling repre-

sentation. The membrane is displayed as thin gray lines with phosphorus

atoms of the headgroups as spheres.
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value is not particular to the chosen structure in water but
rather to other environmental conditions.

Although proposals addressing the lower free energy for
Arg insertion in experiments compared to simulations
have been put forth (42,43), a similar reduction in magni-
tude for hydrophobic residues such as Leu remained elusive.
Calculation of translocon-assisted insertion free energies,
however, showed lower free energies for both Arg and
Leu when compared to other computationally resolved
scales (15). The insertion free energy for Leu in the WTB
scale, �1.81 kcal/mol (18), lies between that in the biolog-
ical hydrophobicity scale (�0.6 kcal/mol (4)) and most
computational values (�4 kcal/mol (7,8,41,42)). In the
second tested case, the insertion free-energy of Leu relative
to Ala on OmpLA was computed, employing FEP simula-
tions identical to those carried out for Arg. From these simu-
lations, the free energy DDGOmpLA

aq:/DLPC (Leu) is found to be
between �2.64 and �0.91 kcal/mol. As found for Arg, in
all contexts, the free energy of insertion is lower than that
measured in previous simulations, and encompasses the
experimental value. As opposed to Arg, for Leu the optimal
agreement with experiment is found for an isolated Leu in
the aqueous environment (DDG ¼ �2.06 kcal/mol),
although the range overall is quite small.

Finally, the insertion free energy for a hydrophilic residue,
Ser, was determined. For this residue, theWTB insertion free
energy (1.83 kcal/mol) lies slightly below the range of free-
energy values determined from the thermodynamic cycle in
Fig. 1, i.e., 3.52–5.24 kcal/mol. The solvation free energy
for a serine side-chain analog in the CHARMM force field
is in good agreement with experiments (9), suggesting that
the difference here results from limited system-specific
issues. Ser is accommodated in the membrane core primarily
through hydrogen bonding to the backbone carbonyl of
Glu224, disturbing a b-strand of the OmpLA barrel, as
opposed to theArg residue,which quickly induces the forma-
tion of a stablewater defect in themembrane (see Fig. 2). The
slow process of attracting one water molecule to coordinate
the serine residue in the membrane core, which was observed
during extended equilibration but not during FEP simula-
tions, may bias the calculated insertion free energy cost.
Indeed, a subsequent FEP calculation in which the initial
state included a water molecule interacting with the
membrane-inserted Ser210 displayed a reduction in the inser-
tion free energy of 1.21 kcal/mol (see the Supporting Mate-
rial). Additionally, it is known that the distribution of

hydrogen-bond geometries in MD simulations differs from
that observed in crystallographic structures, due in part to
the lack of polarizability in most force fields (44,45).
Comparison between quantum chemical and molecular
mechanical interaction energies for observed Ser210-b-barrel
interactions, described in the SupportingMaterial, illustrates
that the CHARMM force field undervalues the interaction
by an average of 0.46 kcal/mol, and, thus, alsomay contribute
to a reduction in the insertion free energy for Ser. A combina-
tion of the two effects, namely the slow diffusion of water
to the embedded Ser210 and the slight difference in
hydrogen-bonding energies, would be sufficient to bring
the simulated free energy cost in line with the experimental
one.

Contributions to the determined insertion
free energies

Although the FEP simulations provide the free energies of
insertion for the OmpLA mutants, they do not reveal their
origins unambiguously. This ambiguity is especially perti-
nent for Arg, which deviates the most from previously
determined computational scales. Comparing the membrane
insertion of Arg on OmpLA to simulated insertion of Arg
on a background poly-leucine helix (6,15) suggests three
possible sources. The most obvious source is the difference
in membrane composition, the former being carried out with
DLPC lipids (12-carbon tails) and the latter with DPPC
(16-carbon tails). The resulting difference in membrane
thickness is ~4–5 Å, shown in Fig. 3. In another MD study,
a similar lipid-tail-length change, i.e., DOPC / DMPC,
accounted for a decrease of ~5 kcal/mol for insertion of
an arginine side-chain analog (46). Alternatively, differ-
ences in the local protein environment of the Arg residue,
namely the OmpLA b-barrel or the polyL a-helix, may
play a role. A final possibility is shifting of the protein in
the membrane such that the Arg residue is no longer cen-
trally located. During a 10-ns equilibration, the distance
between the Ca of Arg210 and the membrane center is
1.67 5 0.67 Å (see Fig. S2), which is estimated from the
potential of mean force for a related system to reduce the
insertion free energy by ~3 kcal/mol (6). For comparison,
local thinning of the DLPC bilayer within 15 Å of Arg210

amounts to 1.61 5 0.74 Å (see Fig. S3).
To separate the contribution of the variance in bilayer

thickness from the other two possible factors, FEP

TABLE 1 Relative free energies of membrane insertion for OmpLA mutants

Residue WTB scale (kcal/mol)

Aqueous reference state

Folded Seven-residue strand Isolated

DDGOmpLA
aq:/DLPC (Arg) 3.71 5 0.13 3.76 5 0.27 1.06 5 0.22 2.65 5 0.20

DDGOmpLA
aq:/DLPC (Leu) �1.81 5 0.13 �0.91 5 0.06 �2.64 5 0.08 �2.06 5 0.07

DDGOmpLA
aq:/DLPC (Ser) 1.83 5 0.22 4.08 5 0.05 3.52 5 0.06 5.24 5 0.06
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simulations examining the transfer of an arginine residue
borne by an extended polyL a-helix from the aqueous phase
to the center of a DLPC bilayer were carried out. The Ca of
Arg/Ala was restrained to the bilayer’s center to prevent

sliding of the helix, as done previously (15). The resulting
free-energy change, i.e., DGpolyL

aq:/DLPCðArgÞ � DGpolyL
aq:/DLPC

ðAlaÞ, was found to be 6.09 kcal/mol. When the nearly
identical transfer process was carried out in a DPPC
membrane, the free-energy change was much higher,
DGpolyL

aq:/DPPCðArgÞ � DGpolyL
aq:/DPPCðLeuÞ ¼ 16.9 kcal/mol

(6,15). The difference in the two protocols, namely the use
of Ala versus Leu as the Arg counterpart, is expected to
contribute up to 1.81 kcal/mol according to other hydropho-
bicity scales (4,7,8,18). This would make the net DDG for
the DLPC membrane 7.9 kcal/mol, at most—still almost
10 kcal/mol less than that for DPPC. Therefore, the
membrane thickness is the principal contributor to the rela-
tively low free energies measured in the WTB hydropho-
bicity scale, with shifting of OmpLA in the membrane also
playing a role.

CONCLUSION

Numerous free-energy scales for the partitioning of proteins
into membranes have been defined based on different exper-
imental approaches and biophysical circumstances (13).
Most recently, a water-to-bilayer (WTB) scale was deter-
mined for the direct insertion of each residue centrally
located on the b-barrel of OmpLA (18). Although simpler
in principle than, e.g., cotranslational insertion through the
translocon (5,15,43), many of the molecular details of the
OmpLA-mediated insertion process remain unknown. By re-
producing here the free energies for Arg, Leu, and Ser inser-
tion computationally, these details become partially
revealed. Most notably, the thickness of the membrane is
found to be primarily responsible for the relatively
compressed free energies measured in the WTB scale, with
shifting of the protein off-center in the membrane and inter-
actions within the protein itself affecting them as well.

FIGURE 3 Membrane hydrophobic thickness over the course of the

Ala / Arg FEP simulations. Thickness was measured as the separation

between the average positions of the carbonyl carbon atoms in the lipid tails

of each leaflet (denoted C21 and C31 in the force field); this thickness is

nearly identical to the experimental value for DLPC, namely 2zCG ¼
21.8 Å (37). The black and gray curves represent the forward and reverse

trajectories for each protein-membrane combination indicated in the plot.

FIGURE 2 Interactions that stabilize residues in the membrane. (A(( and

B) Membrane deformation induced by the presence of arginine at the center

for (A(( ) OmpLA:Arg210 and (B) PolyL:Arg. The protein is colored as in

Fig. 1 with arginine shown in a stick representation colored by atom

type. The DLPC bilayer is drawn as in Fig. 1. Water is shown as a contin-

uous gray surface above and below the membrane, while water molecules

that penetrate the bilayer are shown in a licorice representation. (C)

Hydrogen-bonding of Ser210 to the OmpLA b-barrel backbone.
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Because the folding and insertion pathway for OmpLA
into the membrane is unknown, and may even be
sequence-dependent, three different contexts for the
mutated residue outside the membrane were considered:
on a fully folded OmpLA; in the center of a seven-residue
oligopeptide; and as a completely isolated amino acid.
The range of free energies calculated for these contexts is
small, but not negligible, at 2.7 kcal/mol for Arg and
1.7 kcal/mol for both Ser and Leu. Furthermore, the ideal
agreement between experiment and simulation was found
in a different context for each of the three tested residues.
The distinct, context-dependent free energies expose the
complexity of the OmpLA insertion process, which cannot
be assumed to be identical for every residue.

It has become increasingly evident that charged amino
acids can be stable in the membrane, at least marginally,
albeit only under certain conditions. One example is a high
protein content in the bilayer (42). Another such condition
was illustrated here, namely an abnormally thin membrane,
which, among other things, reduces the deformation required
to accommodate snorkeling of an Arg residue to the
membrane-water interface (see Fig. 2). These conditions
are both distinct from and independent of the typical bio-
logical membrane-insertion process, which makes use of
the translocon (15,16). Insertion through the translocon can
give an apparently low free-energy cost, but does not guar-
antee thermodynamic stability once in the membrane. Tests
on isolated transmembrane segments that can distinguish
between stable, membrane-inserted states and initially in-
serted, but ultimately unstable and/or expelled states, are
required to further probe the distinction between translo-
con-assisted insertion and water-to-bilayer insertion.

The diversity of paths to the membrane for proteins and
contributors to their stability therein limits the universality
of a single free-energy scale for identifying and character-
izing membrane proteins. Indeed, insertion propensity is
not even a localized property, with residues on neighboring
TM segments being able to affect it (43,47,48). Addition-
ally, insertion free energies for multiple residues on a single
TM segment are not uniformly additive (13), requiring the
inclusion of multiresidue corrections to any prediction
method. Simulations can play a role in the determination
of these nonlocal and nonadditive effects, provided they
are sufficiently accurate. Although much discussion has
arisen as a result of the apparent disparity between
computational and experimental membrane-insertion free
energies (16,49–51), this disparity is likely due to a
comparison of nonequivalent systems, e.g., membranes
with different thicknesses or different end-points of the
process under study (14). As demonstrated here, simula-
tions and experiments can achieve quantitative agreement
provided the specific conditions in each are carefully iden-
tified and matched. The addition of polarizability to clas-
sical simulations is expected to enhance this agreement
further (52,53).

SUPPORTING MATERIAL

Details of corrections to the insertion free energy for Ser, two tables, three

figures, and references (54,55) are available at http://www.biophysj.org/

biophysj/supplemental/S0006-3495(12)00094-X.
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