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Abstract

The assembly of molecular machines and transient signaling complexes does not typically occur under circumstances in
which the appropriate proteins are isolated from all others present in the cell. Rather, assembly must proceed in the context
of large-scale protein-protein interaction (PPI) networks that are characterized both by conflict and combinatorial
complexity. Conflict refers to the fact that protein interfaces can often bind many different partners in a mutually exclusive
way, while combinatorial complexity refers to the explosion in the number of distinct complexes that can be formed by a
network of binding possibilities. Using computational models, we explore the consequences of these characteristics for the
global dynamics of a PPI network based on highly curated yeast two-hybrid data. The limited molecular context represented
in this data-type translates formally into an assumption of independent binding sites for each protein. The challenge of
avoiding the explicit enumeration of the astronomically many possibilities for complex formation is met by a rule-based
approach to kinetic modeling. Despite imposing global biophysical constraints, we find that initially identical simulations
rapidly diverge in the space of molecular possibilities, eventually sampling disjoint sets of large complexes. We refer to this
phenomenon as ‘‘compositional drift’’. Since interaction data in PPI networks lack detailed information about geometric and
biological constraints, our study does not represent a quantitative description of cellular dynamics. Rather, our work brings
to light a fundamental problem (the control of compositional drift) that must be solved by mechanisms of assembly in the
context of large networks. In cases where drift is not (or cannot be) completely controlled by the cell, this phenomenon
could constitute a novel source of phenotypic heterogeneity in cell populations.
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Introduction

A large fraction of current data in molecular biology has been

derived from the collation and curation of predominantly static

types of data, such as genomic sequences and protein structures.

However, at increasing rate, proteomic high-throughput methods,

such as yeast two-hybrid assays, protein complementation assays,

affinity purification with mass spectrometry, peptide phage

display, and protein microarrays are yielding data about protein-

protein interactions (PPI) whose significance resides in the system

behavior they collectively generate [1–5]. In conjunction with

more thorough biochemical measurements, these interaction data

yield mechanistic statements ranging from less detailed, as in ‘‘a

phosphoepitope of EGFR binds strongly to the SH2/PTB domains of Grb2,

Nck1, PI3Ka and weakly to the SH2 domains of Grb10, Grb7, Nck2,

Shp1’’, to more detailed, as in ‘‘axin1 binds a region in the armadillo

repeat of b-catenin, if b-catenin is unphosphorylated at certain N-terminal

residues.’’ Unlike structural and genomic data types (‘‘molecular

nouns’’), interaction fragments of this kind (‘‘molecular verbs’’) are

fundamentally about process, and their broader meaning resides in

the dynamic behavior of the large networks they generate.

High-throughput assays, such as yeast two-hybrid (Y2H),

typically probe for pairwise binding between proteins in a highly

impoverished context, lacking excluded volume and other effects

that might influence interactions when the proteins tested are

bound to multiple others [2,6]. Interaction data of this kind are

often rendered as a large graph in which nodes represent proteins

and edges correspond to pairwise binding interactions reported by

the assay. These graphs have been shown to possess statistical

properties, such as bow-tie structure [7,8], approximately scale-

free degree distributions [9] and small-world characteristics [10].

Yet, unlike road networks, the edges in PPI networks do not

represent persistent physical connections between nodes, but

rather summarize interaction possibilities that must be realized

through physical binding events. The cumulative effect of such

events results in a distribution of protein complexes that ultimately

determines cellular behavior. Significant properties of PPI

networks may therefore become apparent only by studying the

behavior they induce in a population of proteins, which requires

the development and analysis of dynamic models.

The first problem in constructing a dynamic model from raw

PPI data is the lack of sufficient structural information. For

instance, it is a priori unclear whether a ‘‘hub’’ protein with many

interactions in the PPI network employs just one surface or many

surfaces. As Figure 1 indicates, the set of complexes in which such

a protein could participate depends on this information, since it
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allows the distinction between individual interactions that are

mutually compatible and those that are mutually exclusive. The

Structural Interaction Network (SIN) of yeast [11] is a dataset that

provides this needed level of resolution.

It is often assumed that the various domains of a protein interact

independently of one another; that is, the capacity of a protein’s

domain A to bind its various partners is independent of the binding

state of domain B on that same protein. While such an assumption

represents an extreme case, so too does the assumption that

domain A can bind only when domain B is unbound, or an

assumption that posits strict allosteric correlations among binding

partners. In the absence of systematic and readily accessible

knowledge about steric and allosteric constraints in large-scale

protein interaction networks, we consider the case of complete

independence (subject to general biophysical constraints discussed

below) as a useful ‘‘what-if’’ scenario against which to assess the

significance of departures from independence.

The independence assumption creates a major challenge for

making and running a model of a PPI network: the number of

possible complexes (i.e. unique molecular species) that the network

can generate increases exponentially as the network grows,

reaching astronomical numbers for biologically reasonable net-

works [12,13]. This situation necessitates an implicit representa-

tion of interactions as local rules, since models based on the explicit

representation of all molecular possibilities, such as systems of

differential equations, are entirely unfeasible. In recent years, we

and others have developed appropriate tools for the representation

and simulation of combinatorially complex systems of this kind

[14–20].

In this contribution, we join two critical components–a suitable

dataset and a modeling methodology–to simulate a large slice of

the SIN network. By taking into account the inherent combina-

torial complexity of the network, we extend pioneering calcula-

tions by Maslov and Ispolatov [21]. We consider neither post-

translational modifications nor synthesis and degradation process-

es, as the available SIN data is exclusively about binding. Our

simulated systems therefore reach thermodynamic equilibrium,

although we shall see that this seemingly peaceful picture does not

do justice to the microscopic dynamics. The main motivation for

studying a highly abstracted and thus somewhat fictitious

biochemical system is threefold. First, the image of a causally

unconstrained network of possibilities, as conjured up by Y2H, has

been taken seriously enough to attract extensive statistical

investigation [22–25] of its structural properties. It seems

warranted, therefore, to complement such studies with an eye on

the dynamical properties implied by a similarly unconstrained

interpretation of Y2H data. Second, the dynamic behavior of such

a network serves as a null model to understand the need for and

the consequences of curtailing independence through, for

example, post-translational modification and allosteric interaction.

Figure 1. Binding surfaces and complex formation. Center: The traditional plain graph representation of a PPI network represents the binding
capabilities of a hub protein (red) through several incident edges. The diversity of molecular species generated by these potential interactions
depends on the extent to which they compete for binding surfaces (white circles), to which we refer as ‘‘sites’’. These conflicts are best represented as
a ‘‘site graph’’, derived from a domain-level resolution of protein-protein interactions. We depict two extreme cases. Top: All interaction partners
compete for the same site. Bottom: All interactions occur at different sites and are mutually compatible. In the language we deploy to represent
processes based on protein-protein interactions, a site denotes a distinct interaction capability. A comparison between the scenarios depicted at the
top and the bottom illustrates how combinatorial complexity is affected by binding conflicts.
doi:10.1371/journal.pone.0032032.g001
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In other words, studying the dynamics of the null model identifies

a type of problem that specific causal constraints might have

evolved to address, as we argue in the ‘‘Discussion’’ section. Third,

the simulation of SIN dynamics represents a challenging test case

illustrating a number of concepts underlying recent rule-based

modeling methodologies [13–15,17,20] that are applicable to

more general situations.

Methods

Interaction network data
As mentioned above, in order to provide a more structural

picture of protein interaction networks, Kim et al. [11] combined

raw interaction data from high-throughput experiments with data

regarding domain-domain interactions in solved protein struc-

tures. This ‘‘Structural Interaction Network’’–or SIN–associates a

surface or domain of a protein with each interaction, converting

the traditional flat graph into a site graph or domain-level

interaction network of the type shown in Figure 1. We obtained

the original SIN directly from the authors. It consists of 1106
distinct proteins and 3826 specific pairwise interactions (edges).

Two proteins belong to the same graph component if there is a

path of edges connecting them. The SIN has several such

components. The largest (or ‘‘giant’’) component consists of 454
proteins and 2572 interactions. The giant component contains

41% of the nodes in the graph, but includes 67% of its interactions.

It therefore exhibits a significantly higher edge density (i.e. the

fraction of possible edges present), r&0:025, than the rest of the

graph, r&0:0059. The second-largest component in the SIN has

only 21 proteins and most of the other components consist of only

2 proteins, representing isolated dimerizations. Current computa-

tional power precludes simulation of the dynamics of the entire

SIN. Since the giant component contains a majority of the SIN

interactions (and most of the interesting structure), we focussed on

this part of the graph.

Data on subcellular localization and copy number were

obtained from the ‘‘yeastgfp database’’ described in [26,27]. This

database contains information for about 75% of the proteins in the

SIN. Using this data, we determined compartment-specific

subgraphs of the SIN, consisting of only those proteins and their

interactions that co-occur in the same compartment. These

subgraphs exclude proteins that are found in a compartment but

do not interact with any of the other proteins in that compartment,

since such proteins could not participate in any kind of binding

dynamics in our simulations. The cytoplasmic subgraph of the SIN

consists of 349 proteins and 689 reactions. If we restrict ourselves

to just the cytoplasmic subgraph of the giant component (which

contains 78% of the interactions), we obtain a system with 167
proteins and 539 reactions, shown in Figure 2, which defines the

network we simulated. We call this cytoplasmic subgraph of the

giant component of the SIN the ‘‘cytoplasmic SIN’’ or cSIN for

short.

Although homomeric interactions (i.e. a protein interacting with

itself on some site) are certainly common, no such interactions have

been characterized for this particular set of proteins: the Sac-

charomyces Genome Database (SGD, http://www.yeastgenome.

org) lists no homomeric physical interactions for proteins in the

cSIN.

Copy numbers were assigned to each of these 167 proteins

directly from the yeastgfp data [26]. In those cases where a protein

is listed as existing in more than one compartment, assignment of a

copy number to the cytoplasm becomes ambiguous. In the

absence of data regarding the relative concentration of a given

protein among compartments, we assumed that its concentration

in each compartment is approximately equal. Since the cytoplasm

represents the majority of the cell’s volume (*85% [28]), we

simply assigned all copies of that protein to the cytoplasm. With

this initial condition, the total number of individual protein agents

present in each of our simulations was 2,908,889.

The localization and copy number data we used are based on

measurements in asynchronous populations of cells [26,27]. Our

simulations do not take into account variations in copy number

that might occur during the cell cycle [29–33]. However, only 13
of the 167 cSIN proteins exhibit strongly significant variations in

expression level over the cell cycle, in the sense of being among the

top 500 scoring yeast genes in a recent analysis [32]. Although

changes in copy number during the cell cycle can clearly influence

the types of complexes present in the cell [33], we leave

consideration of these effects to future work.

A file with the complete set of interaction rules of the cSIN

together with the initial condition is available as Supporting

Information S2.

Executable representation of the interaction network
A graph of prima facie independent binding interactions of the

kind shown in Figure 2 permits a huge number of possible

complexes (which we estimate in the ‘‘Results’’ section below). The

vast number of possible molecular species rules out any modeling

approach that requires their a priori enumeration. The only feasible

simulation approach is one that replaces reactions between

molecules with local rules that only specify which state modifications

occur (in our case association or dissociation) and the sites on

which these modifications depend (Figure 3). Reactions, on the

other hand, must completely specify the binding state of each

participating protein. A large set of reactions might express the

same fundamental event in all of its possible contexts, whereas a

rule can represent this entire family of reactions by specifying only

the minimal context necessary for the event to occur. Rules can

thus capture non-covalent association and dissociation of proteins

or, more generally, post-translational modifications in a way that

respects, as and when appropriate, the local quality of these

interactions.

In representing and executing the cSIN, we follow our

specification and implementation of a rule-based language, known

as Kappa [14,17,18,34–37], which is conceptually related to the

Biological Network Generator Language (BNGL) [15,16,19,20];

see section 1 of Supporting Information S1. Rules that stipulate no

other context than the domains involved in a binding or unbinding

interaction between two proteins correspond exactly to the edges

in the cSIN. We convert each edge into a pair of Kappa rules of

the kind

A(si),B(sj) ? A(s1
i ),B(s1

j )

A(s1
i ),B(s1

j ) ? A(si),B(sj),
ð1Þ

representing a binding (or unbinding) interaction between the ith
site of protein A and the jth site of protein B. The superscript

expresses a bond between the sites. For example:

YHL034C(s3),YPL043W(s2) ? YHL034C(s1
3),YPL043W(s1

2)

YHL034C(s1
3),YPL043W(s1

2) ? YHL034C(s3),YPL043W(s2):
ð2Þ

Such rules of local interaction are then applied to a computational

mixture consisting of a large graph whose nodes represent

individual proteins and whose connected components represent

protein complexes, much like the application of the rule in panel A

of Figure 3 to the two-molecule mixture in panel B. Rule

Combinatorial Complexity and Compositional Drift
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applications occur with probabilities in accordance with stochastic

chemical kinetics, giving rise to a continuous-time Markov process

implemented as detailed in [18,19,38] and summarized in

Supporting Information S1. At the start of a simulation, each

protein is present with a number of copies derived from the

previously mentioned empirical data, resulting in a total of

*3|106 individual protein agents.

Affinities
In order to simulate the dynamics of a PPI network, we must

assign to each (independent) binding reaction both an on-rate kz

(the rate constant for the first type of rule in equation 2) and an off-

rate k{ (the rate constant for the second type of rule in equation

2). The dissociation constant, KD:k{=kz, is a measure of the

strength or affinity of the corresponding interaction. Since high-

Figure 2. The network subject of this paper. The graph of proteins, sites and interactions found in the cytoplasmic portion of the Structural
Interaction Network (cSIN), as compiled by Kim et al [11]. The cSIN displays interactions at the level of domains or binding surfaces, making explicit
which interactions compete for the same binding site. We refer to such a graph as a site graph. Its nodes are proteins (ovals), which are sets of sites
(small circles on the ovals). Sites, rather than proteins, anchor the edges of this graph.
doi:10.1371/journal.pone.0032032.g002
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throughput PPI experiments do not provide information about

interaction strengths, we consider below three broad cases. The

conversion into rate constants is discussed in the subsequent

section.

Uniform affinities. Even when all of the binding reactions in

the network have the same affinity, the question remains as to

exactly which universal affinity to choose. The protein interaction

strengths found in the PINT database exhibit an average affinity

equivalent to a KD of *5 nM [21,39]. Since these interactions are

obtained for a wide variety of proteins (many of which are not

found in yeast and many of which represent mutated interaction

pairs) and under a wide range of conditions (i.e. pH values and

temperatures that are not necessarily characteristic of the yeast

cytoplasm), it is difficult to interpret what this average value might

mean for the cSIN. We therefore chose to look at a variety of KD

values: 10 nM, 100 nM and 1 mM. The 10 nM case represents a

set of fairly strong interactions (close to the average in PINT

[21,39]) and the 1 mM case represents a set of fairly weak

interactions.

Concentration-based affinities (‘‘equal saturation’’).

Even for strong interaction strengths (e.g. 10 nM), the log-

normal distribution of protein concentrations observed within the

cell causes reactions to operate at widely differing saturation levels.

For instance, an interaction between two proteins at a

concentration of *1 mM will be highly saturated when

assuming a KD of 10 nM, while an interaction between two

other proteins present at 0:1 nM will not be saturated at all.

Following Maslov and Ispolatov [21], we consider a case in which

each reaction in the network operates at approximately the same

level of saturation. Consequently, we require the reaction affinities

to vary with the (initial) reactant concentration as

KD(i,j)~
max(Ci,Cj)

20
, ð3Þ

where KD(i,j) is the dissociation constant of binding between

proteins i and j, and Cx denotes the total concentration of protein

x (obtained from experiment [40]). This method ensures that the

overall binding saturation is essentially constant across reactions in

the network when physiological concentrations are employed. The

set of KD’s obtained from equation 3 are log-normally distributed

[40], and has recently been shown to represent a biologically and

biophysically realistic case [41,42].

Structure-based affinities. We can estimate binding

affinities directly from the protein structures on which the

interaction network is based [11]. Several studies have noted

that the change in solvent-accessible, non-polar surface area that

occurs on binding, DSASANP, is linearly related to the free energy

of association [43,44]. To make use of this fact, we first re-

constructed (as detailed in section 8.2 of Supporting Information

S1) the PPI network on the basis of the domain-domain interaction

structures referenced in the most recent release of iPfam. We call

this network the ‘‘cSIN2.’’ For each interaction in the cSIN2, we

used the software package POPS [45] to determine the average

DSASANP taken over all the instances of that particular domain-

domain interaction in iPfam. Using a recently published data set

[44], we performed a linear regression to map DSASANP into the

corresponding free energy of binding DGb. Although the

correlation in this case is certainly not perfect (R2~0:47, see

Figure 11 of Supporting Information S1), the resulting equation

provided us at least with a rough estimate of KD (as

exp(DGb=RT)) for each interaction in the cSIN2.

Rate constants
We next describe the convesrion of affinities into on- and off-

rates. Let kz(i,j) denote the rate constant of the binding reaction

between proteins i and j (on-rate) and let k{(i,j) denote the

dissociation rate constant for that bond (off-rate). Since

KD(i,j)~k{(i,j)=kz(i,j) only constrains the ratio of the rates,

we can choose either the on- or the off-rate arbitrarily and still

satisfy a specified reaction affinity.

In the present work, we constrain the on-rate to always have the

same value, regardless of the KD. When all reactions in the

network have the same affinity, varying the global affinity (e.g.

from 10 nM to 100 nM) thus amounts to varying the probability

that bonds will be broken once they are formed. This means that

the relative change in free energy between the unbound state and

the binding transition state is the same for all reacting pairs; all

that changes is the free energy of the bound state, as illustrated

schematically in Figure 4. It appears reasonable [41,42] that much

of the differences in binding free energies across the network are

due to differences in relative hydrophobicity. However, in cases

where the transition state free energy includes significant

electrostatic contributions, one might expect significant variance

in both on- and off-rates [46].

Equipped with deterministic rate constants k for each of our

reactions, we convert these into stochastic rate parameters b. A

Figure 3. Kappa rules. A: A rule expresses a local mechanistic
statement (of empirical or hypothetical origin) about a protein-protein
interaction in terms of a rewrite directive plus a rate constant (not
shown). The left hand side (LHS) of the rule consists of partially specified
protein agents, and represents the contextual information necessary for
identifying reaction instances that proceed according to the rule. The
right hand side (RHS) expresses the actions that may occur when the
conditions specified on the LHS are met in a reaction mixture. In this
case, the rule specifies a binding action. Site graphs are represented in a
simple syntax, explicated in Figure 1 of Supporting Information S1. B:
The rule in panel A can match the shown sample mixture of molecular
species in two ways, giving rise to two possible reactions with different
outcomes. Because of their local nature, Kappa-rules may apply in both
a unimolecular and bimolecular situation. In general, such rules are
given two rate constants (a first-order and a second-order constant),
and the simulator will automatically generate the appropriate
stochastic kinetics. However, in the present paper, global constraints
prevent this ambiguity at the outset and the rules of the cSIN therefore
necessitate only one rate constant (bimolecular for association and
unimolecular for dissociation).
doi:10.1371/journal.pone.0032032.g003
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dimensional argument suggests that for a unimolecular unbinding

reaction b{~k{ in units of s{1, while for a bimolecular binding

reaction

bz~
kz

NAV
, ð4Þ

in units of molecule{1s{1, where kz is the deterministic rate

constant in units of M{1s{1, NA is Avogadro’s constant and V is

the volume of the system in liters. Microscopically, the inverse

volume dependence arises from converting the ‘‘collision volume’’

swept out by a moving molecule into a probability through

division by the volume available to an encounter, i.e. the volume of

the system [38]. A unimolecular reaction has no collision volume

and therefore its stochastic rate is independent of the system

volume.

Since the protein copy numbers used in our simulations were

obtained for haploid yeast cells, we approximate the volume to be

42 mm3, or 4:2|10{14 L [47]. We set the on-rate bz(i,j)~0:01
for all i, j in the network, which corresponds, by equation 4, to a

deterministic on-rate of 2:5|108 M{1s{1. Given the absence of

empirical measurements, the value of kz (bz) is not meant to be

realistic. Interactions driven purely by hydrophobicity could have

values *106{107 M{1s{1 [48]. The time scales discussed in the

‘‘Results’’ section are estimated assuming this range of on-rates,

but it is important to note that the actual on-rates observed in a

living system might differ significantly. Hence, for our simulations,

the unit of time is essentially arbitrary.

Preventing polymerization
A local cSIN rule like equation 2 specifies the binding between

specific domains of proteins A and B, without, however, specifying

whether A and B are members of the same or distinct complexes.

In the first case the interaction is intramolecular; in the second

case it is intermolecular (Figure 3). When the underlying network

site graph contains proper cycles (i.e. paths that start and end on

the same protein node without touching a site twice), this

ambiguity results in infinitely many possible rings and polymers.

Without further constraints, mass action would lead to a

prevalence of long polymers, but aside from cytoskeletal proteins

(such as actin and tubulin) or prions there is no empirical

information suggesting that proteins generally form non-covalent

polymer chains. In our simulations we must, therefore, prevent or

curb polymerization. We achieve this by employing global

constraints, that is, constraints that are not expressed directly as

executable rules, but as filters applied by the simulator at runtime.

We implemented two scenarios that correspond to distinct

structural interpretations of network cycles, which we summarize

next. A detailed exposition can be found in sections 6 and 7 of

Supporting Information S1.

The ‘‘stable rings’’ (SR) scenario. We might imagine that

the open chain R:A{C{B (which, in the more precise notation

of our formalism, reads A(s,p1),C(s1,p2),B(s2,p)) is structurally

sufficiently constrained to readily form a cyclical complex by

intramolecular binding between A and B. In this rationale, there is

not enough physical room in R to accommodate another B in an

intermolecular reaction with A. We refer to this scenario as ‘‘stable

rings’’ (SR): In this case the binding site on A is assumed to be

naturally occluded by the B already bound to C. In the SR

scenario, ring-like structures are highly stable [49] and form

immediately whenever intramolecular ring closure is possible. A

thermodynamic justification of this scenario is discussed in section

6.1 of Supporting Information S1. Polymerization is thus

prevented by the formation of stable rings and a constraint

enforcing the excluded volume implied by the SR scenario

(Figure 5 of Supporting Information S1).

The ‘‘no rings’’ (NR) scenario. Many steric constraints

other than direct occlusion of A’s binding site for B might prevent

the addition of a second B to R. We subsume these alternative

geometries under the ‘‘no rings’’ (or NR) scenario. The NR

scenario introduces a syntactical filter that simply prevents at

runtime any form of polymerization by fiat, as detailed in Figure 6

and section 7.1 of Supporting Information S1.

Neither the SR case nor the NR case is likely to represent the

reality of complex formation in the cell. Some of the cycles in the

contact map of the cSIN might represent SR complexes, others

might follow the NR scenario or perhaps even give rise to

polymers of limited size.

We assessed the validity of the cSIN and the soundness of our

model by comparing our computational mixtures of complexes

with Affinity Purification-Mass Spectrometry (AP-MS) experi-

ments (see section 9 of Supporting Information S1). In discussing

the computational results, we focus on the NR scenario since it

provides slightly better overlap with experimental data.

Results

Estimating the Number of Reachable Molecular Species
The number of distinct molecular species–the ‘‘reachable

complexes’’ or ‘‘reachables’’ for short–that can, in principle, be

generated with the interactions listed in the cSIN conveys a sense

for the fraction of possibilities that a population of protein agents

can access at any one time.

If an interaction network does not give rise to cyclical

subgraphs, the set of reachables can be enumerated. If cycles are

present, as is the case in the cSIN, the set of reachables, absent any

constraints, is infinite due to polymerization. The cSIN contains

many proper cycles (see Figure 2), which motivated the SR and

NR scenarios described above. Since these constraints are not

expressed as Kappa rules, but rather enforced at runtime, we were

Figure 4. Schematic free energy landscape. The schematic shows
the free energy landscape for a case in which differences in affinities are
entirely represented by differences in off-rates. Here we have two
different binding reactions: A binds B and C binds D. ‘‘A+B’’ and ‘‘C+D’’
represent the unbound states on the far left of the schematic reaction
coordinate; the unbound states in this case have roughly the same free
energy. The transitions states (represented by ‘‘A � � � B’’ and ‘‘C � � � D’’)
also have approximately the same free energy; the change in free
energy from the unbound state to the transition state is identical in
both cases (giving identical values of kz). However, the bound states
(‘‘AB’’ and ‘‘CD’’) exhibit very different free energies, and the difference
in free energy change between the transition state and the bound state
results in a much higher value of k{ for the C–D binding reaction
compared to the A–B binding reaction.
doi:10.1371/journal.pone.0032032.g004
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unable to compute the possibilities inherent in the cSIN other than

by brute force enumeration stratified by complex size, as reported

below. This strategy is feasible only up to a modest size. However,

we can estimate the combinatorial complexity of the cSIN by

constructing artificial acyclic interaction graphs with an edge

density that matches the cSIN and for which we can count the

number of complexes.

Direct Enumeration by complex size. The cSIN consists of

167 distinct proteins, and thus 167 unique monomers, and 539

dimers, since every interaction in the network can form a unique

dimer. Starting from the set of dimers, we can create a set of

trimers by taking a free site in every such dimer and adding a

possible binding partner to form a trimer. Because of cycles in the

contact map, such a procedure could easily produce multiple

copies of the same complex; for instance, adding a C to the B of an

A- B dimer produces the same A- B- C trimer as adding an A to

the B of a B- C dimer. To avoid overcounting, we simply check for

each new complex whether it has already been found and, if it has,

we discard it. We prevent polymeric complexes by simply

requiring that no agent type occurs twice in the same complex.

This is a stricter criterion than the no-polymerization constraint of

the NR scenario mentioned above. As such our counts constitute

lower bounds for the NR case. Starting with the set of unique

trimers, the set of tetramers is calculated in much the same way.

We iterate this procedure up to complexes of size 7. The results are

shown in Figure 5A. Truncating the enumeration at this point

results in nearly 105 unique molecular species. Unfortunately, for

complexes of size 8 or larger the computational cost of checking

for duplicates exceeds current computational resources. Despite

this limitation, brute-force enumeration up to size 7 indicates that

the cSIN is likely to generate a very large number of possible

unique complexes.

Complexes in Random Acyclic Graphs. We construct

random acyclic interaction graphs (RAGs) with varying number N

of nodes but a fixed cSIN edge density r&0:039 and compute the

number of possible complexes, as detailed in section 4 of

Supporting Information S1. Each point in Figure 5B reports the

average number from 10 independently generated RAGs with a

given N. Although we cannot give a tight estimate for the cSIN,

we conclude from Figure 5B that the number of possible unique

cSIN complexes is in the range of 1030 to 1040, which is much

larger than the total number of proteins present in any given yeast

cell. This approach assumes, however, that all possible complexes

can be physically realized. In section 5 of Supporting Information

S1, we describe a simple calculation to estimate the consequences

that steric constraints might have on the total number of molecular

species that an interaction network could form. The case we

considered represents a fairly strong constraint, in which steric

effects become more and more prominent as complexes get larger.

Given that the surface area of a complex will tend to increase with

increasing size, this might not represent the most realistic situation,

but the model demonstrates that even strong steric constraints do

not curtail combinatorial complexity significantly. If only 20% of

complexes of a given size can be realized, the total number is still

*1012, suggesting that steric constraints would have to be

incredibly strong in order to reduce the number of molecular

possibilities to numbers that allow their simultaneous sampling by

a cell.

Network dynamics with uniform affinities
Based on our assumptions about affinities and rate constants

(Methods section), uniform affinities translate into uniform rate

parameters. The case we discuss here consists in a stochastic

dissociation constant kD~250 molecules (corresponding to a

deterministic KD~10 nM); a stochastic on-rate bz~0:01
molecule{1 s{1 (corresponding to a deterministic on-rate

2:5|108 M{1s{1); and a stochastic off-rate b{~2:5 s{1

(corresponding to a determinsitic off-rate k{~2:5 s{1). Results

for other uniform interaction strengths are similar and are

discussed in Supporting Information S1.

The number of unique molecular species present as a function

of time (averaged over 15 independent simulations) is shown in

Figure 6A. The system approaches a steady-state comprising

around 10,000 unique complexes. The approach to steady state

Figure 5. Combinatorial complexity of the cSIN. A: Panel A reports the number of unique complexes that could be produced by the cSIN as a
function of complex size using brute force enumeration. As described in the text, complexes that contain more than one copy of a particular protein
are discarded, since they could correspond to polymers. Given that the NR constraint allows for multiple copies of a protein to enter a complex in
certain situations (see section 7.1 of Supporting Information S1), the numbers displayed here represent a lower bound on the number of unique
complexes for the NR constraint. The red line represents an exponential regression of the data, with y~69:6e0:89x. B: Panel B reports the estimated
combinatorial complexity of cSIN-like acyclic networks as a function of network size, using the procedure described in section 3 of Supporting
Information S1. Each point represents an average over 10 independently generated model networks with the same edge density as the cSIN. The red
line depicts an exponential regression with y~2:74e0:75x.
doi:10.1371/journal.pone.0032032.g005
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occurs on a time scale that corresponds roughly to the

equilibration of individual binding reactions. Significantly weaker

interactions lead to somewhat fewer unique species, as does the SR

scenario. In all cases, no single (simulated) cell contains enough

unique complexes to even sample all of the 7-mer structures

compatible with the network (Figure 5A), much less the set of all

possible complexes. To characterize the differences between

simulations, or independent ‘‘cells’’, we define the set of unique

complexes in a cell i as Ci and the distance between two cells i and

j as:

d(i,j)~
jCiDCj j
jCi|Cj j

ð5Þ

where jX j denotes the number of elements in set X and CiDCj

denotes the symmetric difference (i.e. the set of complexes that are

either in cell i or cell j, but not both). Normalizing the symmetric

difference by the union Ci|Cj results in a d(i,j) representing the

probability that a particular type of complex found in either cell i
or cell j is unique to one cell or the other. Although cells start out

as identical, they rapidly diverge to a distance of about 0:83,

indicating that only 17% of complexes are found in both cells at

steady-state (Figure 6B). Alternative distance functions, including

definitions that consider differences in copy number, produce

similar results (see Supporting Information S1). The exact value of

the steady-state distance depends on details and parameters of the

simulations: The SR scenario leads to lower distances–as low as

*0:4 (see Supporting Information S1).

Figure 6. Dynamic diversity of the cSIN in yeast cells. A: The graph reports the number of unique complexes actually present in a simulated
system (‘‘cell’’) as a function of time. Each point represents an average over 15 independent simulations. In all panels of this figure, the error bars
represent approximately 95% confidence intervals. B: The normalized distance between the complement of complexes (‘‘complexomes’’) generated
by individual simulations is shown as a function of time. Each point is an average over all unique comparisons between 15 independent simulations.
Using the parameters described in the text, the separation between steady states reaches *80% of the maximal distance. C: The stationary distance
between cells is shown as a function of complex size, averaged over all of the unique comparisons between 15 independent simulations. The
complexomes of cells are nearly identical with regard to small complexes, due to fewer combinational possibilities and the high relative abundance
of small complexes (see Figure 7 below). However, complexomes differ dramatically for large complexes. This is the case for all combinations of
parameters and ring closure scenarios we have tested (see below and Supporting Information S1). Since other parameter sets do not substantially
change the relationship shown here, much of the difference in inter-cell distances for these parameter sets derives from how heavily the dynamics
sample large complexes. D: The distance between a cell at time t and the same cell at time tzDt is shown as a function of Dt. The first time point t is
taken after cells have reached steady state (in this case, t = 2, see panels A and B). The blue line denotes the average inter-cell distance at steady state,
taken from the last time point in panel A above. The red curve represents an exponential fit to the relaxation, with y~0:81{0:66e{38x.
doi:10.1371/journal.pone.0032032.g006
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The divergence of initially identical cells in the space of possible

complexes varies strongly with complex size and copy number

(Figure 6C of this text and section 8 of Supporting Information

S1). All cells exhibit an essentially identical repertoire of

monomers, dimers and trimers, which tend to be the most

common complexes. However, for complexes of size 9 or larger,

cells tend to be completely distinct from one another. We generally

find only a single example of any given large complex in a cell, and

any particular large complex found at time t in one cell will not be

found anywhere else in the population (Figure 6C). This finding is

robust to changes in the affinity parameters and characterizes both

the SR and NR constraints (see Supporting Information S1).

Figure 7 shows the distribution of complex sizes at steady state.

This distribution is derived from the same set of simulations

examined in Figure 6. Small complexes (i.e. monomers and

dimers) clearly dominate the distribution, with larger complexes

being comparatively rare. The dominance of monomers in this

case is somewhat surprising; the interactions here are fairly strong,

so one would expect most proteins to participate in at least one

complex. The empirical distribution of protein copy numbers,

however, is approximately log-normal [40]. The most common

protein in these simulations is present with over 105 copies, while

the least common protein has only *100 copies. Thus, certain

proteins are present at much higher concentration than any of

their potential binding partners, leaving many of the former as

monomers. Although quite rare, the largest complexes sampled by

these simulations have over 40 members.

These results suggest that each cell on its own might drift in the

space of complexes. As seen in Figure 6D, the distance between a

particular cell at times t and tzDt rapidly increases. For a realistic

binding rate (*107 s{1M{1) [48], the time-scale on which a cell

loses memory of its former ‘‘compositional self’’ is *0:3 seconds.

We refer to the independent sampling of a distinct and constantly

varying set of complexes over time as ‘‘compositional drift’’.

Network dynamics with concentration-based affinities
We find that simulations in which KD’s vary across the network

according to equation 3 produce results very similar to those

obtained at 10 nM for the NR scenario. Figure 8 exhibits the

appropriate comparisons. The qualitative results are the same for

the SR scenario, with lower affinities leading to somewhat smaller

average distances (data not shown) but still large distances for large

complexes.

Network dynamics with structure-based affinities
Proceeding as detailed in ‘‘Affinities’’ of the Methods section, we

constructed a version of the cSIN—the cSIN2—in which each

binding affinity in the network was calculated from the change in

non-polar solvent-accessible surface area based on the protein

structures originally used to construct the SIN itself.

The cSIN2 consists of 414 edges between 166 nodes. A number

of edges in the original cSIN are lost in constructing the cSIN2,

because some domain-domain interactions do not have represen-

tative structures in the iPfam database that are truly intermolec-

ular, while others do not have structures where binding is strong

enough (see section 8.2 of Supporting Information S1). The

distribution of free energies of binding, DGb, for the cSIN2 is

shown in Figure 9A. It has an average of {11:0 kcal mol{1 with

a standard deviation of 2:96 kcal mol{1. Interestingly, this

average free energy corresponds to a dissociation constant of

10:6 nM which is close to the average free energy seen in the

PINT database [21] and used for all of the interactions in the

simulations described above under the uniform rate constant

scenario.

The concentration-based KD scenario (i.e. the case in which

dissociation constants are derived from equation 3) yields an

average affinity that is very similar to the structure-based KD’s

(KD’s of 13:1 and 10:6 nM, respectively). However, despite the

similarity in the average, the KD values for the structure-based

affinities vary considerably across the network in a manner that

appears independent from the concentration-based affinities

derived from equation 3, Figure 9B.

Figure 10 summarizes the results of NR simulations of the

cSIN2 using these structure-based affinities. As can be seen from

Figure 10, the overall behavior of the cSIN2 is very similar to that

of the original cSIN simulated with NR constraints. The cSIN2

yields somewhat lower steady-state distances than the original

cSIN when simulated using 10 nM affinities (*0:72 vs. *0:83) or

100 nM affinities (see Supporting Information S1), largely because

the cSIN2 simulations sample somewhat fewer large complexes.

SR simulations based on the cSIN2 are also very similar to the

10 nM SR case (data not shown).

Other results
Supporting Information S1 includes discussions of simulations

using alternative distance measures (equation 5); comparisons

between different uniform affinities; and the global SR scenario.

The thermodynamics of ring-like protein complexes (discussed in

section 6.1 of Supporting Information S1) can give rise to

situations in which a particular pair of sites might not bind one

another strongly enough to be detected in a high-throughput

interaction screen (such as a Yeast Two-Hybrid experiment) but

could nonetheless contribute dramatically to the stability of certain

complexes by forming a bond to complete a ring. In Supporting

Information S1 we discuss the addition of such ‘‘cryptic cycles’’.

All these variations leave the main observation of compositional

drift intact.

Figure 7. Distribution of complex sizes. The graph shows the
distribution of complex sizes for NR simulations with all dissociation
constants set to 10 nM. This distribution is calculated at the final time
point for the simulations represented in Figure 6. The points on the
graph represent the average probability of finding a complex of a
certain size across 15 independent simulations. The error bars in this
case are set to approximate 95% confidence intervals; for large
complexes, the error bars exceed the scale for the lower bound. This
is because the 95% confidence intervals include 0, which cannot be
displayed on the logarithmic scale of the ordinate.
doi:10.1371/journal.pone.0032032.g007
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Discussion

Our simulations provide a dynamical picture of PPI networks

based on a model that is respectful of their combinatorial

complexity. PPI networks represent binding capabilities between

proteins typically determined by an assay that yields inherently

local information. Two broad components were necessary for

making and running a model of a PPI network: (i) A representation

of the system that can handle combinatorial complexity implicitly,

since the number of possible complexes is astronomical, preventing

their explicit representation. (ii) A dataset in which the interactions

derived from a binding assay have been curated, and binding

interactions are resolved at the level of domains or sites, allowing

the distinction between interactions that are mutually compatible

and those that are mutually exclusive. The first component is

addressed by rule-based approaches, such as Kappa or BNGL.

The second component is a suitable dataset that has been recently

compiled by Kim et al [11]. We bring these two critical

components together, along with protein localization, abundance

data and a few biophysical assumptions, to generate a simulation

of a large slice of a PPI network.

According to our simulations, systems that start from identical

initial conditions diverge from one another rapidly with regard to

the complexes they contain, eventually sampling different regions

of the space of possible complexes. This is particularly the case for

large complexes, where independent simulations tend to be

essentially disjoint. Our model indicates that the complexity of

such networks will result in compositional drift, even with the

biophysical constraints imposed by the NR and SR scenarios.

However, we consider neither post-translational modifications nor

translation and degradation processes. Our systems therefore

reach thermodynamic equilibrium. At equilibrium the vast space

of molecular possibilities permits energetically neutral composi-

tional drift, i.e. a never-ending change in the set of realized

complexes present in a particular simulation.

Figure 8. Comparison between network dynamics based on uniform affinities and concentration-basd affinities. A: The number of
unique complexes in independent simulations as a function of time: each curve represents the average over 15 independent simulations. In this
panel, as with all of the panels in this figure, the error bars represent &95% confidence intervals. Allowing interaction strengths to vary across the
network produces more unique complexes at steady state (*15000 for the variable case compared to *10000 for the 10 nM case). B: Comparison of
the distribution of complex sizes: the distributions represent the probability of finding a complex of a particular size across the entire population of
15 simulations at the final time point in panel A. The two interaction affinity scenarios produce similar distributions, with the 10 nM simulations
sampling somewhat larger complexes. C: Comparison of the distance between independent simulations over time: each curve represents the
average over all unique comparisons between 15 independent simulations using the distance measure defined in equation 5. As in panel B, the two
scenarios produce essentially identical curves. D: Comparison of the distance between independent simulations as a function of complex size: each
curve represents the average over all unique comparisons between 15 independent simulations at the final time point in panel A. Again, the two
parameter scenarios produce essentially the same result.
doi:10.1371/journal.pone.0032032.g008
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The data from which our network is built has clear limitations.

High-throughput methods for acquiring PPI data, such as Y2H

assays, tend to have substantial false positive and false negative

rates [11,42,50]. Curated, structure-based data sets like the SIN

alleviate this drawback to some extent, but we cannot rule out the

presence of fictitious edges in the cSIN network. Given that drift,

especially among large complexes, is a robust feature of our

simulations, it is unlikely that the ultimate removal of such edges

would affect this phenomenon. Indeed, the cSIN2, which contains

a slightly smaller set of interactions based on more stringent

structural evidence, undergoes essentially the same level of drift as

other versions of the network, indicating that inaccuracies in the

underlying interaction data are unlikely to have a large influence

on the overall dynamics described here (although they would have

an influence on the identity of the complexes formed).

Our dynamic model does not include synthesis and degradation

processes, raising the question whether limiting the time proteins

persist in the cell might affect drift. High-throughput measure-

ments of protein degradation rates [51] indicate that the average

half-life of yeast proteins is around 42 minutes, with a minimum

observed half-life of about 2 minutes. In our simulations, both the

total number of unique complexes and their size distribution

generally reach equilibrium in about one second (see, e.g.,

Figure 6A). Degradation processes are thus unlikely to occur at

high enough rates to fundamentally influence the average size of

complexes at steady-state and thus the presence of drift. However,

in the SR scenario, ring-like structures are by definition so stable

that they are much more likely to be removed by degradation or

dilution than spontaneous dissociation. In that case, it is

conceivable that degradation actually increases drift on longer

timescales. Given our current computational limitations, we are

unable to carry out simulations that are long enough to assess the

influence of realistic synthesis and degradation rates on drift in the

SR scenario.

The empirical data that define our model are also too limited

and fragmentary to provide an accurate reflection of the actual

geometric, kinetic, and biological constraints that determine

complex formation. Indeed, large molecular machines like the

ribosome and the proteasome are highly unlikely to undergo

compositional drift [52–54]. In view of these shortcomings, what

are we to make of compositional drift? At a conceptual level, our

work suggests a serious problem that must be overcome in order

for such complexes to assemble reliably in the cell. It is not enough

for the parts of a specific supra-molecular complex to simply ‘‘fit

together snugly’’ or bind with high affinity when independent

binding sites and a large number of extraneous binding partners

yield a fantastically large set of combinational possibilities that can

never be exhaustively populated. Absent any further constraints,

the system becomes ‘‘lost’’ in the vast set of possible species

available to it, preventing the reliable assembly of a desired target

complex.

The reduction of drift requires limiting the space of possibilities

available to a PPI system. One strategy to accomplish this would

be to limit the size of complexes that can form, since small

complexes are well-sampled in our simulations and do not exhibit

significant drift. A second strategy would be to evolve ‘‘hierarchi-

cal’’ assembly pathways, thus curtailing the number of accessible

complexes but not necessarily their size. A simple implementation

of the first strategy would be to constrain the number of sites in

proteins, especially those proteins that are ‘‘hubs’’ in the network.

Such an architecture resembles the scenario depicted at the top of

Figure 1, but it does not seem to characterize the overall SIN or

the cSIN studied here. Moreover, such a network architecture

would not account for large macromolecular machines. A flexible

inplementation of the second strategy is the use of conditional

rules, where binding interactions between sites are highly sensitive

to the molecular context in which they occur. There are many

potential mechanisms suitable for introducing causal dependencies

between binding and unbinding events: for instance, allostery and

cooperativity could be employed to radically alter the binding free

energy of a particular interaction in specific contexts, thus

inducing the dynamics to avoid a large fraction of molecular

possibilities. Post-translational modifications could also be used to

create causal dependencies, provided they are deployed in such a

manner as not to increase the combinatorial complexity [55].

We view compositional drift as the network analogue of the

protein folding problem. The combinatorial explosion of possible

conformational states available to the polypeptide chain raised the

conundrum of how a protein can fold quickly and stably into a

native structure (the so-called ‘‘Levinthal paradox’’). The explora-

Figure 9. Binding free energies and dissociation constants for the cSIN2. A: A plot of the distribution of free energies for reactions in the
cSIN2. The black circles are a histogram of the free energies; the grey line represents a smoothed version of the distribution. The average free energy
is {11:0 kcal mol{1 , which corresponds to a dissociation constant of 10:6 nM. B: This plot presents a comparison of the structure-based KD’s for
each edge in the cSIN2 (abscissa) and the concentration-based KD ’s (ordinate). For each interaction in the cSIN2 the concentration-based KD is
obtained using equation 3. Despite the similarity in the average affinity in both cases (corresponding to a KD of around 10 nM), the two methods
produce KD values that are very different from one another: the linear correlation produces an R2 of 0:04.
doi:10.1371/journal.pone.0032032.g009
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tion of this problem eventually led to a framework for identifying the

evolved features of free energy landscapes that ensure reliable

folding of proteins [56,57]. Likewise, the combinatorial explosion of

possible molecular associations gives rise to the compositional drift

problem for assembly in a network context. While there are many

potential mechanisms suitable for introducing causal dependencies

between binding and unbinding events, the specific deployment of

these mechanisms can only be understood in light of the system-

wide drift problem that they solve. In other words, compositional

drift brings to light the need for complex networks to evolve

particular chemical potential landscapes in order for assembly to proceed

reliably within cells. This also raises the question, especially with

regard to the many transient protein associations that can be formed

during signaling, whether it is at all possible to entirely eliminate

drift while reusing proteins in diverse contexts within the same cell.

A certain level of compositional drift might be unavoidable, and in

some situations could actually constitute an evolutionarily advan-

tageous source of non-genetic individuality in isogenic populations.

Supporting Information

Supporting Information S1 This file contains a brief
review of simulating Kappa models; techniques for
counting complexes in acyclic graphs and for generating
acyclic graphs with cSIN edge densities; and a rationale
and complete description of the SR constraint. It also

contains additional results: alternative definitions of distance

between simulations of the cSIN; simulations using the SR

constraint; simulations using different affinities; a treatment of

cryptic cycles; and a comparison with Affinity Purification/Mass

Spectrometry data.

(PDF)

Figure 10. Results from NR simulations of the cSIN2. A: The number of unique complexes in independent simulations as a function of time:
this curve represents the average over 15 independent simulations. In this panel, as with all other panels in this figure, the error bars represent &95%
confidence intervals. The steady-state number of unique complexes is slightly smaller for the cSIN2 than the original cSIN using constant 10 nM
affinities (*7000 compared with *10000). B: This plot shows the probability of finding a complex of a particular size across the entire population of
15 simulations at the final time point in panel A. The distribution of sizes is similar to that found for NR simulations of the original cSIN, although the
complexes are, on average, somewhat smaller than those obtained from NR simulations of the cSIN at 10 nM. C: This plot displays the distance
between independent simulations over time: the curve represents the average over all unique comparisons between 15 independent simulations
using the distance measure defined in equation 5. The distances obtained from the cSIN2 are slightly lower than those obtained from the cSIN at
10 nM (*0:72 vs. *0:83). D: This curve represents the distance between simulations as a function of complex size, averaged over all unique
comparisons between 15 independent simulations at the final time point in panel A. The overall shape of this curve is essentially identical to the
10 nM case for the original cSIN as displayed in Figure 5; the main difference is that the simulations based on structure-derived KD’s sample
somewhat smaller complexes than the original 10 nM case.
doi:10.1371/journal.pone.0032032.g010
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Supporting Information S2 This file contains a repre-
sentation of the cSIN interactions as Kappa rules. The

model is for uniform 10 nM affinities running under the NR

constraint. Due to the NR and SR constraints, the simulator

executing this file is a specialized version of the open source

generally available for download on www.kapplanguage.org. This

specialized version is available in source and binary format from

the authors.
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