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Scientifique and Université Paris Diderot, 75006 Paris, France

Edited by John Ross, Stanford University, Stanford, CA, and approved February 20, 2009 (received for review October 3, 2008)

Modelers of molecular signaling networks must cope with the com-
binatorial explosion of protein states generated by posttranslational
modifications and complex formation. Rule-based models provide a
powerful alternative to approaches that require explicit enumeration
of all possible molecular species of a system. Such models consist of
formal rules stipulating the (partial) contexts wherein specific pro-
tein–protein interactions occur. These contexts specify molecular
patterns that are usually less detailed than molecular species. Yet, the
execution of rule-based dynamics requires stochastic simulation,
which can be very costly. It thus appears desirable to convert a
rule-based model into a reduced system of differential equations by
exploiting the granularity at which rules specify interactions. We
present a formal (and automated) method for constructing a coarse-
grained and self-consistent dynamical system aimed at molecular
patterns that are distinguishable by the dynamics of the original
system as posited by the rules. The method is formally sound and
never requires the execution of the rule-based model. The coarse-
grained variables do not depend on the values of the rate constants
appearing in the rules, and typically form a system of greatly reduced
dimension that can be amenable to numerical integration and further
model reduction techniques.

protein interaction networks � rule-based models � model reduction �
distinguishability � information carriers

Molecular biology is spectacularly successful in disassem-
bling cellular systems and anchoring cell-biological behav-

iors of staggering complexity in chemistry. This raises the
challenge of reconstituting molecular systems formally, in pur-
suit of principles that would make their behavior more intelli-
gible and their control more deliberate. This pursuit is as much
driven by the practical need to cure disease as it reflects a desire
for a theoretical perspective needed to understand the complex-
ity of cellular phenotypes. In achieving such a perspective, we
must deal with two broad problems.

First, we must be able to represent and analyze molecular
interaction systems of combinatorial complexity. Although ubiq-
uitous, such systems are perhaps most notorious in the context
of cellular signaling. The posttranslational modification of pro-
teins and their noncovalent association into transient complexes
generate an astronomical number of possible molecular species
that can relay signals (1). The question then becomes how to
reason about system dynamics if we cannot possibly consider a
differential equation for each chemical species that can appear
in a system.

Second, understanding systems requires resisting the temptation
of adopting the view of an outside observer. The outside view is
indeed appropriate for the chemical analysis of a network, since the
experimenter deliberately interacts in specific ways with the net-
work to create measurable distinctions. Yet, the network, as a
dynamical system, may not be capable of making these same
distinctions. For example, an experimental technique might differ-
entiate between SOS recruited to the membrane via GRB2 bound
to SHC bound to the EGF receptor and SOS recruited via GRB2
bound to the EGF receptor directly. However, from the perspective
of the EGF signaling system, such a difference might not be
observable for lack of an endogenous interaction through which it

could become consequential. The endogenous units of the dynam-
ics may differ from the exogenous units of the analysis.

In an attempt at mitigating the first problem, analytical model
reduction techniques eliminate variables on the basis of algebraic
constraints such as conservation equations and quasi-steady-
state conditions obtained mainly by exploiting separations of
time and/or concentration scales (for example refs. 2 and 3).
Numerical model reduction consists in integrating the kinetic
rate equations of the full network and subsequently building a
reduced model based on species that were observed to be
significantly populated (4). Yet, all these techniques hinge on an
explicit representation of the full network, which severely cur-
tails their applicability to larger systems.

The past few years have seen the emergence of several ap-
proaches (5–8) that represent signaling systems in terms of rules
stipulating conditions for specific interactions among proteins.
These conditions typically specify (far) less than the full state of all
proteins involved in an interaction. In this way, rules capture
combinatorial complexity but avoid an explicit representation of
the complete reaction network involving all possible molecular
species. Yet, to explore the dynamics of a system of rules, such
approaches must resort to stochastic simulations (6, 9, 10), whose
event-based nature exacts a high computational cost. Ordinary
differential equations (ODEs) would be highly useful for rapidly
exploring system dynamics by numerical integration, but a flat-out
expansion of rules into ODEs would, of course, fall victim to the
combinatorial explosion. To nonetheless assemble ODEs from
rules, a coarse-graining approach has been recently proposed
(11–16). The idea is to convert a rule-based model into a reduced
system of rate equations by identifying molecular patterns (sets of
species) that act ‘‘independently’’ (16). We believe this approach to
be promising, because it seems natural that a system described by
rules might be characterized by dynamical units that are less specific
than molecular species. We proceed in the same spirit, but differ
significantly by seeking as variables those molecular patterns that
establish the finest level of resolution at which the dynamics of the
system is capable of making distinctions, thus rendering finer-
grained patterns unwarranted. This we call internal coarse-graining.
Moreover, our approach is formal, avoiding the limitations listed in
ref. 16.

The next section surveys the language, Kappa (17), in which we
cast rules of interaction. Kappa forms the basis of a substantive,
formal, yet intuitive modeling framework (7, 9, 18, 19). Access to
the Kappa modeling platform is provided at www.cellucidate.com.

Kappa: A Language for Molecular Biology
Kappa (17) is a formal language for defining agents (typically
meant to represent proteins) as sets of sites that constitute
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abstract resources for interaction, as illustrated in Fig. 1 and
extensively detailed in section 1 of supporting information (SI)
Appendix. Sites can hold an internal state, as generated through
posttranslational modifications, and engage in binding relations
with sites of other agents. An association of proteins is a
connected (site) graph, called a complex (of agents), as shown in
the box of Fig. 1B. The nodes of the graph are agents, but the
endpoints of edges are sites, which belong to agents. Although
an agent can bear many connections, a site can bear only 1.

Kappa is used to express tunable rules of interaction between
proteins characterized by discrete modification and binding states.
The idea of a rule, Fig. 1A, is to stipulate only the molecular context
required for an interaction along with some rate constant(s). The
left-hand side (lhs) of a rule is any site graph. Agents may mention
a subset of their sites and omit states (SI Appendix, section 1.2). The
right-hand side (rhs) exhibits the changes that occur when the lhs
is matched (SI Appendix, section 1.4) in a mixture of agents. The
difference between rhs and lhs is called the action of the rule. Sites
mentioned on the lhs are said to be tested by the rule. Sites that are
tested but not modified constitute the context of a rule’s action.
Because rules typically do not mention all of the sites and states of
an agent, they keep combinatorial complexity implicit, obviating
the need for eliminating it. A molecular species is a complex in
which each agent occurs with a complete set of sites in definite
states. We also refer to molecular species as ground-level objects.
The complete set of sites defines the finest grain of resolution at
which the state of an agent is known. Like rules, this set of sites can
be updated to reflect new knowledge or hypotheses. Rules give rise
to potentially numerous reaction instances [whose rate constants

are related to the rate constant(s) of the rule]. These instances
involve particular combinations of molecular species, each of which
satisfies the context required for the rule to apply, see Fig. 1B and
Fig. S4 in SI Appendix.

Kappa rules are both descriptions of mechanistic knowledge and
executable instructions. In fact, we view Kappa as a programming
language attuned to molecular signaling. Rules induce a stochastic
dynamics on a mixture of agents, for which we implemented a
general and efficient implicit-state version of the Doob–Gillespie
algorithm (9). A Kappa model of a biological system is a concurrent
computer program whose instructions are rules that asynchronously
change the state of a shared store representing the reaction mixture
on which the rules act. Computer programs are formal objects that
can be analyzed statically. Static analysis assists in the discovery of
behavioral properties of a program without running it, much like a
system of differential equations can be analyzed without simulating
it. Static analysis involves, for example, the inspection of causal
dependencies among rules and an overapproximation of the mo-
lecular species reachable from an initial condition.

Kappa is closely related to BNGL (5), but differs from the latter
in being a context-free grammar, that is, a language that expresses
strictly local rules of action. The computational cost of checking
whether a rule can apply to a given choice of reactants is bounded
by the size of the rule’s lhs and not by the reactants. This difference
enables scalable simulation (9) and static analysis of the implied
dynamical system (7), which plays a crucial role in the efficiency of
the coarse-graining technique we describe here (see Remarks below
and SI Appendix). The central role we attach to static analysis sets
our framework apart from other rule-based approaches, such as
BNGL (5) and ‘‘little b’’ (8), whose primary deliverable is the
automated assembly of the full reaction network by generating all
possible species and their reactions from a given set of rules. Yet,
the combinatorial explosion inherent in molecular signaling makes
such goals impractical and often impossible. In a pilot study of EGF
signaling, we collated 71 rules representing mechanistic observa-
tions of pertinent protein–protein interactions. These rules would
produce 1019 molecular species. Our current EGF model has grown
to �350 rules. It thus appears more useful to forgo the expansion
into an inscrutably large system of equations and, instead, apply
static analysis techniques directly to the rule collection and explore
the system with stochastic simulations that generate dynamical
trajectories (6, 9, 10). Yet, such simulations are computationally
expensive. This raises the question whether there is a system of
ODEs that ‘‘corresponds’’ to a rule-based model, i.e. that consti-
tutes its natural differential semantics.

From Rules to ODEs
Using a rule-based (as opposed to a reaction-based) model
amounts to acknowledging that molecular species may not
always be meaningful units of the dynamics. Such units should
lump together species that cannot be distinguished by the
dynamics arising from a given system of rules (see section 4,
especially 4.2, of the SI Appendix). Moreover, the lumping must
be self-consistent, meaning that the contribution of each rule to
the rate of production or consumption of any unit should only
depend on other units. In the following, we introduce 2 key
properties that a suitable set of coarse-grained dynamical units—
referred to as fragments (to be properly defined later)—should
satisfy.

Property 1 (‘‘No Overlap’’). No fragment properly overlaps a lhs
component of a rule on a modified site. This property is defining
of fragments and is key (but not enough) for expressing the rate
function of a fragment in terms of fragments. The reasoning is
illustrated in Fig. 2. The rule r at the top consumes those species that
match its lhs component rlhs. We can think of a pattern X in terms
of its extension X�, which is the set of species that match X,
accounting for the many ways in which any such species might

Fig. 1. Rulesandreactions inKappa. (A)Arulecapturesahigh-levelmechanistic
statement (empirical or hypothetical) about a protein–protein interaction in
terms of a rewrite directive plus rate constant(s). The left-hand side (lhs) of the
rule is a pattern of partially specified agents and represents the contextual
information necessary for identifying reaction instances that proceed according
to the rule. The right-hand side (rhs) expresses the actions that may occur when
the conditions specified on the lhs are met in a reaction mixture of Kappa agents.
A maximal connected subgraph on the lhs of a rule is called a rule component. (B)
The rule in A matches a combination of agents in 2 distinct ways giving rise to 2
possible reactions with different outcomes. Note that because of their local
nature,Kapparuleswith�1lhscomponentmayapply inbothaunimolecularand
bimolecular situation. This is why such rules are given 2 rate constants, a first-
order (k1)andasecond-order (k2) constant. Inatextual representation,agentsare
names followed by an interface of sites delimited by parentheses. Bonds are
labeled by superscripts and internal states at a site by subscripts. In the graphical
rendition, internal states are indicated as labeled barbs. See SI Appendix, section
1 and the section Kappa: A Language for Molecular Biology for more details.
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match X (think symmetries). The extension rlhs
� of rlhs is shown

schematically at the bottom of Fig. 2 as a yellow area within the blue
area standing for the set of all molecular species implied by the rules
of a system and an initial condition. Fig. 2 provides assistance for
reasoning about the suitability of a few sample patterns as potential
fragments in light of Property 1. Consider pattern B. Although B
does not itself match rlhs, some ground-level instances of B do, such
as species 2. Thus, B� (properly) intersects rlhs

� , which makes it
impossible to express the contribution of the unimolecular rule r to
the consumption rate of B in terms of B alone. Rather, we would
have to know at any time the fraction of molecular species that
occurs in the intersection of B� with rlhs

� , which is a property that
requires knowing the complete reaction mixture at any time. By
contrast, A� is entirely contained within rlhs

� . As a consequence, the
firing of rule r will consume the pattern A at a rate proportional to
its concentration [A], defined at t � 0 by the number of embeddings
of A in the reaction mixture. There is no need to know the reaction
mixture for any subsequent time. The case of C is analogous to that
of A.

It is possible to refine B into B� by adding context, such that
B�� � rlhs

� . For example, connecting agentA at siteb to agentB at
c yields B� � C (a1), A (au, c1, d, b2), B (c2) with B�� �
B� � A�. Thus, as far as rule r is concerned, patterns A, C, and
B� are fragment candidates by virtue of their extensions being
inside rlhs

� . However, other rules in the system may further
constrain these potential fragments. Indeed, our procedure to
construct fragments depends on all rules of a given system.

Property 2 (‘‘Orthogonality’’). Fragments must partition (in the
extension sense) anything that is contained within a fragment,

which we refer to as a subfragment. We show later that any lhs
component of a rule is a subfragment (Property 1 clarifies this only
for particular components). The rate equation for a fragment
affected by a rule of molecularity �1 (i.e. a rule with 2 or more lhs
components) gets a contribution consisting of a monomial involving
several fragments. Consider, for example, a rule of type Z, Z�3Z*,
Z�, which modifies the lhs component Z into Z*. Consider further
a particular fragment A that is a refinement of Z and is thus
consumed by the rule (A� � Z�). The consumption rate of A will
be proportional to [A] [Z�]. If only 1 fragment, say B, matches the
lhs component Z�, then [Z�] � [B]. However, there may be several
fragments Bi that match Z�, in which case [Z�] should be the sum
over all [Bi]. The only problem is that the Bi might have ground-
level extensions Bi

� that overlap, causing the naive sum to over-
count. Thus, there must be a set of fragments that partitions Z��,
so that [Z�] can be expressed as a sum of orthogonal fragments.
Property 2 does more, however: It guarantees that the concentra-
tion of any subfragment can be expressed in terms of fragment
concentrations. This will be needed down the road. Properties 1 and
2 jointly ensure a self-consistent coarse-grained system whose
dynamics is sound. Soundness means that computing the ground-
level dynamics and then coarse-graining yields the same result as
coarse-graining at the outset and then running the coarse-grained
dynamics.

Note that the (possibly infinite) set of molecular species is always
a trivial set of fragments enjoying Properties 1 and 2, but typically
far from optimizing our criterion of ‘‘dynamical distinguishability.’’
We can do much better without ever touching the ineffable
ground-level network of species. As we show next, by proceeding
directly from the rules, we construct dynamical units whose bound-
aries are carved out by the actions available to the system.

Constructing Coarse-Grained Fragments
In this section we implement Properties 1 and 2 by defining
syntactical criteria with which we scan all rules in a model to
determine which agents and sites belong to a fragment. As a test
case, we apply these criteria to a rule-based model of a small section
of early events in epidermal growth factor (EGF) signaling as
adapted from ref. 20. These events include the binding of EGF
(agent E) to the receptor (R), the subsequent dimerization of the
receptor, and the eventual recruitment of SOS (O). The model
consists of 39 rules r01–r39, listed in section 5.1 of SI Appendix. We
write separate rules for binding and unbinding actions, because
unbinding typically occurs under less-restrictive contexts than bind-
ing. The names of agent sites were chosen fairly arbitrarily. The
biological accuracy of the published models from which we ob-
tained the rules might be outdated, because knowledge about EGF
signaling mechanisms keeps changing rapidly. Our goal here is not
a particular biological insight, but a procedure of general interest.
Together, the 39 rules of our test case imply 356 possible distinct
molecular species. We shall see, however, that based on these rules
of interaction, the system can only make 38 internal distinctions.
Differential equations in these 38 variables self-consistently de-
scribe the dynamics of the system. It is very convenient to use a
special map as a canvas for laying out which sites and bindings must
appear together in a fragment. In ref. 7, we called this map the
contact map (CM), Fig. 3A. The CM is generated automatically
from a rule-based model and provides a summary of attainable
interactions. The CM is a graph whose nodes are the agents that
appear in the model. Recall that agents are sets of sites. These sites
are the endpoints of edges representing possible binding interac-
tions. Certain sites are colored to indicate that their internal state
can be modified.

Syntactical Criteria for Annotating the Contact Map. We shall need
the notion of a parsimonious covering, or covering for short. A
covering C of a set S is a set of subsets of S, called classes, such that
(i) no class is empty, (ii) no class is a subset of another class, and (iii)

Fig. 2. Rules and fragments. The figure provides assistance in establishing
criteria that define fragments, as detailed in the section From Rules to ODEs. The
top row depicts a (unimolecular) rule whose lhs component is rlhs. The third row
from top shows fully specified molecular species (ground-level objects), num-
bered 1 to 4. The second row depicts various patterns, A to D. Arrows indicate
embedding relations of one pattern (graph) into another (see SI Appendix,
section 1.4). The rectangles at the bottom provide a schematic of relationships
between sets of molecular species that match the patterns A–D and rlhs. Note that
D embeds into rlhs; its matching instances are therefore a superset of those of rlhs.
Also, D does not overlap with rlhs on a site that r modifies. Hence r has no effect
on D.
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the union of all classes yields S. A covering differs from a partition
in that the elements of a covering need not be pairwise disjoint.

In preparation for building fragments, we first annotate the CM
with 2 types of information obtained by applying the syntactical
criteria listed below. (i) For each agent typeA, we define a covering
C(A) of the set of its sites. (ii) For each edge in the CM, we define
its type as either ‘‘solid’’ or ‘‘soft.’’ In a second step, we assemble
fragments based on the annotated CM (ACM).

The following syntactical criteria determine valid coverings
for an agent and the type of a bond. We follow up with some
explanatory remarks.
Cov1 (backward closure). If a rule tests a site a in an agent A and
modifies a siteb in the same agent, any class in C(A) that contains
b must also contain a (e.g. Fig. 4 A and B).
Cov2 (relay). If a rule tests a sitea in an agentA, andA is connected
by some path through a site b to an agent that is modified, any
class in C(A) that contains b must also contain a (e.g. Fig. 4C).
Cov3 (witness). For each agent in an unmodified lhs component,
there must be a class in the agent’s covering that contains all of
the sites tested by the rule.
Edg1. A bond is solid if it occurs on the lhs of a rule that tests
anything other than that bond.

Syntactical criteria Cov1–Cov3 and Edg1 implement Properties
1 and 2. To see this, define an overlap between 2 patterns X and Y
as the set of agents and sites both mention along with a mutually
compatible state. The overlap, if it exists, can be used as an
instruction for gluing the patterns together, see section 2 of SI
Appendix. Our discussion of Fig. 2 suggests that if a pattern has an
overlap with a component on the lhs of a rule, and the overlap
contains a site modified by the action of the rule, the pattern must
be glued to the lhs component to become a fragment as far as that
rule is concerned. Hence, a fragment A either has no overlap with
the sites that are modified by the rule, or it contains a whole lhs
component (SI Appendix, section 2). The same process—glue on

overlap—is repeated for each rule and all agents, starting out with
each site in its own class. Cov1 and Cov2 simply keep track of which
sites of an agent must be mentioned together in a fragment as a
result of this repeated glue-on-overlap. Cov3 takes care of the
orthogonality property in the special case of a component required
for an action but not modified by it (a ‘‘witness’’).

The glue-on-overlap process can pull bonds into a fragment (see
B� in the discussion of Property 1). However, not all bonds are
conduits of control between the parts, say X and Y, they connect.
Suppose that the only time a bond appears on the lhs of a rule is
in a so-called pure dissociation rule that tests nothing except the
existence of the bond that is to be broken. No rule modifying X or
Y depends on that bond (or the bond would figure in a rule other
than the dissociation rule). As a consequence, the fragments
containing X can stop short of including all possible states of Y and
vice versa. The fragments containing X only need to specify whether
or not X is connected to Y, but they do not need to specify Y itself.
(And vice versa.) The directive Edg1 defines those bonds that carry
constraints as solid. All bonds not characterized by Edg1 can be
chosen as solid or soft, and we can choose to have smaller or larger
covering classes (provided they satisfy Cov1–Cov3); the fragmen-
tation is sound either way. However, soft bonds make for smaller
fragments (see next section). Our policy is to obtain small fragments
by choosing covering classes that are as small as possible and
considering bonds to be soft when they appear only on the rhs of
a rule (bonds that are only formed) and/or on the lhs of a pure
dissociation.

Fragment Assembly. To define fragments, it is convenient to extend
the notion of complex with bond stubs. An agent with a bond stub
is written A (aB@b), which means that A’s site a is bound to B’s b,
without, however, including agent B in the complex.

Given an ACM, a fragment F is a complex such that: Each agent
has a set of sites that is a class, every site has an internal state if any,
every site has a binding state—either free, bound, or stubbed, every
stub must correspond to a soft bond in the ACM, and every bond
is solid. A subfragment is a complex that embeds in a fragment.

To obtain a fragment, one starts with an agent and a site. The
ACM then determines which further sites to add and which
binding states (stubbed or not) are appropriate. When there is
nothing more to add, one has a fragment.

As an example of this growth process, consider agent R in our
rule set. According to the ACM in Fig. 3B, we have a choice
between 2 classes. Suppose we choose class {l, r, Y48}. Next, we
assign a state to each site in that class. For example, all sites are free,
andY48 is unphosphorylated. This yields fragmentR (Y48u,l,r),
which is F34 in the complete list for our example (SI Appendix,
section 2.3). Alternatively, we might choose Y48 to be phosopho-
rylated (fragment F15). Yet, if we choose Y48 to be also bound,
then the solid link in the ACM forces agent S into the fragment,
along with its sitec as the link’s endpoint. In turn,c forces inclusion
of the class to which it belongs, {c, Y7}. Now we need to assign
states to c and Y7 in agent S. For example, S (Y7p, c1), R
(Y48p

1
,l,r), which is fragment F04. A further fragment is obtained

by considering site r in agent R to be bound. Site r can bind to
another R agent, but the link is soft. A soft link at r does not force
the inclusion of another instance of R. Instead, the bound state is
only indicated with its type: S (Y7p, c1), R (Y48p

1, l, rR@r). This
fragment, however, does not show up in our list. Given our set of
rules, the state in which R is dimerized at site r cannot occur if the
ligand-binding site l is empty. Such a fragment is automatically
eliminated from the list because a separate reachable state analysis
(next section) recognizes it as inaccessible. Fragments as defined
above enjoy the following properties:
Q1. No fragment strictly overlaps with a rule component on a
modified site.
Q2. Any lhs component is contained in a fragment (i.e., is a
subfragment).

Fig. 3. The contact map. (A) The contact map is a graph whose nodes are the
agents in the model and whose edges are possible bonds between sites. Filled
circles indicate sites with modifications of state. The contact map is a fine-grained
version of what is known as a protein–protein interaction (PPI) map, in that its
edges end in sites of agents and not just agents. (B) The annotated contact map
(ACM) after decoration induced by the directives Cov1–Cov3 and Edg1.

Fig. 4. Examples illustrating the syntactical criteria Cov1 and Cov2 for
determining classes in the covering of an agent. See section 3 of the SI
Appendix for further details.
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Q3. The concentration of any subfragment can be expressed
as a linear combination of fragment concentrations (Eq. 17 in
SI Appendix).
Q4. Fragments are closed under rule actions.

Q1 is Property 1 (no overlap), whereas Q2 and Q3 imply
Property 2 (orthogonality). Q4 means that fragments form a
network of reactions (like species).

Q1 follows from Cov1 and 2 and Edg1; Q2 follows from Cov3
and Edg1 for nonmodified rule components, and Cov1 and 2 and
Edg1 for modified ones; Q3 follows from the exhaustivity of the
growth procedure for fragments, as does Q4.

Q1–3 ensure a sound translation from rules into an ODE
system for fragments, as sketched next.

Assembling the Dynamical System for Fragments. The dynamical
system for fragments is constructed by deriving mass action terms
for the consumption and production of fragments from rules. We
only sketch the reasoning here and provide a detailed account in
section 6.4 of SI Appendix. Consider, for example, a rule of the form
Z,Z� 3 ZOZ�, which binds 2 complexes Z and Z�. Based on this
rule, the differential equation d[Fi]/dt for each fragment Fi that
matches Z obtains a consumption term ��[Fi][Z�], where [Z�] is
expressed as a sum of concentrations of orthogonal fragments using
Q2 and 3. The factor � depends on the rate constant of the rule and
the number of ways that Z embeds into Fi. On the production side,
the kinetic terms depend on the bond type in the ACM. Consider,
for example, a solid bond. A kinetic term �[Fi][Fj] is generated for
the differential equation d[Fk]/dt of every fragment Fk that matches
ZOZ�, where Fi and Fj are fragments matching Z and Z�, respec-
tively, subject to the constraint that the match of Fk is the disjoint
sum of the embeddings of Z and Z� into their respective fragments.
If the bond in ZOZ� is soft and corresponds to a ��� A.aOb.B ���,
one can replace ZOZ� with ZB@b,Z�A@a, because there is no
information in Z�A@a affecting ZB@b. Every fragment Fk matching
ZB@b gains a production term �[Fi][Z�], where Fi matches Z and is
related to the Fk matching ZB@b. A similar argument applies to
fragments that match Z�A@a.

The dissociation of a solid bond ZOZ� will give rise to a piece
Z (and also Z�) that embeds into a fragment F. To determine the
contribution of the dissociation rule to the rate of production of
F, we need the concentration of FOZ�. However, FOZ� is not
itself a fragment but, rather, a subfragment. This is why, for our
method to result in a closed system of equations, we must be able
to express the concentration of a subfragment in terms of
fragments (see Q3 and Property 2).

Fig. 5 was obtained by running a microscopic stochastic
simulation of the early EGF test system, driven by rules r01–r39
while reporting the concentrations of fragments F01–F38. This
stands as a proxy for the numerical integration of the determin-
istic ground-level system of 356 ODEs and the subsequent
lumping of species into our 38 fragments. As a comparison, the
smooth curves result from the direct numerical integration of the
automatically generated ODE system for fragments.

Remarks
Reachability. Underlying several steps of our procedure is a very fast
overapproximation � of the set of reachable species, deploying the
framework of abstract interpretation (21) as described in ref. 19.
This overapproximation comes into play at 3 junctures (i) The
contact map reports edges and site modifications only if they are
reachable by �. (ii) Fragments that are not reachable by � are
discarded. (iii) The procedure for compressing rules (see below)
makes use of �. In ref. 19, we characterize those special situations
for which � is exact. (The present EGF example is such a case.)

Making Rules Concise. Because fragment construction proceeds by
inspecting the structure of rules, it is important that rules be concise,
in the sense of avoiding redundant contextual conditions (tests) on

their lhs. However, what classifies as redundant depends on the
remaining rules in the model. Because rules record empirical
observations or hypotheses, they tend to be crafted in isolation.
Consider, for the sake of illustration, rule r02 expressing the binding
of ligand to receptor: R (l, r), E (r)3 R (l1, r), E (r1). The rule
mentions 2 sites, l and r, of the receptor R. Site l is the ligand
(EGF)-binding site, whose state is modified by the action of r02,
whereas r is the site at which the receptor dimerizes (as described
in r03). Rule r02 asserts that binding of E (EGF) to R requires not
just a free l, but also a free r. Given the other rules of the model,
there is no reachable state of the reaction mixture in which R could
dimerize before binding E. Hence, in the context of the remaining
38 rules of this model, asking for site r to be free is a redundant
condition for the firing of rule r02, because a free l implies a free
r. Without removing such redundancies, fragments would be more
numerous and bloated by fictitious dependencies. To reduce the
extent to which this happens, we preprocess a rule system with an
automatic compression that removes unnecessary contextual spec-
ifications. This technique rests on the reachability overapproxima-
tion referred to in the previous paragraph. In section 5.2 of the SI
Appendix, we list the 39 compressed rules cr01–cr39 from which the
38 fragments were derived.

Role of Rate Constants. All ground-level reactions into which a
rule expands inherit its rate constant (after accounting for
possible symmetry reductions upon expansion). Beyond any
specific values of rate constants, rules themselves already imply
a notion of kinetic distinguishability. For example, our toy model
of early EGF events posits that the phosphorylated EGFR
receptor (R) binds the protein SHC (S), which would read as R
(Y48p), S (c) 3 R (Y48p

1), S (c1). Yet, such a rule does not
appear in the model. Rather, the same binding action between
R and S is found in 2 rules r24 and r28 that differ in their
contexts. Rule r24, R (Y48p), S (c, Y7u) 3 R (Y48p

1
),S (c1,

Y7u), specifies that site Y7 of S must be unphosphorylated and
free, whereas rule r28, R (Y48p), S (c, Y7p

1),G (a1, b) 3 R
(Y48p

2
),S (c2, Y7p

1),G (a1, b), specifies that Y7 of S is phos-
phorylated and bound to G. The only reason to warrant such a
distinction is an actual or hypothesized difference in the rate
constants for the 2 contexts. Hence, regardless of the specific
values of rate constants, positing 2 rules with different contexts
for the same action affects the construction of fragments. The
precise values of the rate constants of rules enter the ODEs for

Fig. 5. Comparison between microscopic dynamics and fragment dynamics. Wig-
gly curves: The microscopic dynamics of the early EGFR example is executed with a
Doob–Gillespie simulation (9) while reporting the coarse-grained fragment concen-
trations. This serves as a proxy for the deterministic microscopic dynamics. Steady
curves: The output of the deterministic fragment dynamics. Still, many fragments
(and many more molecular species) only acquire tiny concentration values, causing
far fewer than 38 curves to be discernible by eye in this plot.
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fragments, but they do not affect the fragments themselves,
because the latter are based on the distinguishability of control
f lows shaped by rule contexts.

Limitations. For our coarse-graining procedure to be well defined,
rules must have unique ground-level molecularity, i.e., a rule with
2 lhs components must apply only to disjoint reactants (unlike in
Fig. 1). Rules whose arity does not always match the arity of their
ground-level instances (molecularity mismatches) can give rise to
polymerization and result in an infinite number of fragments.

Multiple occurrences of the same agent in a rule do not constitute
a problem; neither does the production of an agent. The destruction
of an agent poses no theoretical problem either but is costly in terms
of fragment numbers—as is the BNGL ‘‘.’’ (dot) operator.

We do not claim that our method generates a smallest set of
fragments or that it is unique. In particular, our method carries
a deliberate bias by defining fragments as connected patterns. As
a consequence of our construction via an annotated contact
map, fragments are closed under the operational semantics of
Kappa, i.e., rules convert fragments into fragments (Q4). This
allows us to conveniently picture a reaction network at the level
of fragments. However, this is not necessary for sound coarse-
graining, and alternatives remain to be explored.

We are mathematically certain that any information lost by
our coarse-graining is not distinguishable by the microscopic
dynamics. However, we cannot prove that all information re-
tained in our fragments is distinguishable. One reason is that rule
compression (see above) is, in general, an approximation.

Prior Art. Our method differs from prior approaches in several
aspects. First, our method is formal, which makes its properties
more transparent and amenable to proof. It suffers from none of the
limitations listed in ref. 16, as far as deterministic dynamics is
concerned. Second, our approach focuses on interaction-based
distinguishability rather than ‘‘independence.’’ In section 4 of SI
Appendix, we provide some thoughts on independence and distin-
guishability that are conceptually useful for appreciating our stance
but not needed for grasping our method. The similarity between the
approach sketched in ref. 16 and our present work ends at directive
Cov1, because control flows across bindings are treated differently.
In section 8 of SI Appendix, we compare the outcome of our method
with the manual procedure described in ref. 14.

Conclusions
Rule-based representations have been recently proposed to
address the dynamics of combinatorial systems for which an

expansion into the full reaction network is virtually impossible
(5–7). It would be highly useful to construct a deterministic
projection of rule-based dynamics for several reasons. On the
practical side, rule-based models require stochastic simulations,
which can be very time consuming. Although stochastic kinetics
can provide insights not accessible from deterministic rate
equations, the latter are useful for calibration, analysis, and
judicious simplification. On the conceptual side, many of the
molecular species that are, in principle, attainable by a given
system seem unlikely to play a significant dynamical role, be-
cause they either are too improbable, or the dynamics of the
system cannot differentiate them. The latter is already implicit
in the use of rules, which specify patterns of interactions, rather
than reactions between fully detailed molecular species.

We have presented a formal method for automatically generating
a dynamical system of coarse-grained variables from a given set of
rules, guided by a criterion of distinguishability. The method is exact
in the sense that coarse-graining first and then integrating the
fragment ODEs is equivalent to first integrating the network ODEs
at the level of molecular species and then coarse-graining. The fact
that the ground system is oftentimes ineffable because of combi-
natorial blow-up is of no consequence, because these patterns are
constructed directly from the rules.

Our running test case was a limited model of early events in
EGFR signaling (21), consisting of 39 rules that generate 356
molecular species. Our method yielded a dynamical system of 38
fragments. A pilot study on a larger section of the EGFR system
(19), comprising 71 rules potentially expanding into
18,051,984,143,555,729,567 molecular species, yields 175,988 frag-
ments, which reconnects the system to the realm of feasible ODEs.

In particular cases, fragments become independent units. (A neces-
sary condition being that the coverings of all agents are partitions.) We
call such systems ‘‘tileable.’’ In section 4.1 of SI Appendix, we provide a
connection between tileability and invertibility. Although exact, our
coarse-graining is not invertible, in general.

It might be biologically insightful to attempt a sensitivity
analysis of the fragmentation process, to determine which rules,
when changed, have the biggest impact on the nature and
number of fragments. Can highly consequential rules be guessed
from the annotated contact map? Issues like these suggest that
internal coarse-graining is not only of practical use but of
theoretical import for understanding the informational archi-
tecture of molecular signaling systems.
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