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Fig. 1. Natural logarithms of metabolic rate against mass for the marsupials

(excluding Tarsipes rostratus and Lasiorhinus latifrons). Data from McNab (2008).
Mass scale and curvature in metabolic scaling
Comment on: T. Kolokotrones et al., Curvature in metabolic
scaling, Nature 464 (2010) 753–756

The relationship between Basal Metabolic Rate (BMR) and
mass (M) has long been observed to display approximate
power-law scaling, BMR pMk, with typically 2=3rkr3=4. Scal-
ing of surface area with mass for self-similar animals suggests
k¼2/3, while Kleiber’s, 1932’s, 1947 (empirical) law is k¼3/4, and
may be related to models of branching networks (West et al.,
1997). Arguments for both values continue to be put forward
(White and Seymour, 2003; Farrell-Gray and Gotelli, 2005), and
the issue remains highly controversial (Agutter and Wheatley,
2004; White and Seymour, 2005; Isaac and Carbone, 2010).

Such simple allometry yields a straight line in the plot of the
logarithmic data. However, it has long been noted that a single
exponent does not capture all the phenomena. Some 30 years ago
it was established (Heusner, 1982; Feldman and McMahon, 1983)
that mammalian intraspecific scaling is close to self-similar
(kC2=3), while kC3=4 for interspecific scaling. Hayssen and
Lacy (1985) noted that goodness of fit is much better for the
metatheria than the eutheria, and that better fits are obtained by
using separate regression lines for each order. The effects of the
conditions under which the measurements are made were inves-
tigated in White et al. (2006). The outcome of recent work (Dodds
et al., 2001; White et al., 2007; Packard and Birchard, 2008;
Glazier, 2005, 2010; Clarke et al., 2010) is that no single exponent
can explain the evidence. A recently compiled mammalian data
set, in which great pains were taken to isolate basal metabolic
rates, confirms this (McNab, 2008), noting again however that this
effect is almost entirely confined to the eutheria, and ascribing it
to ecological factors. Among the marsupials there is an almost-
perfect fit for a single exponent. Indeed, if one removes from the
combined marsupial data of McNab (2008) just two species (the
honey possum Tarsipes rostratus and the southern hairy-nosed
wombat Lasiorhinus latifrons, both of which have known peculia-
rities of metabolism, Withers et al., 1990; Frappell et al., 2002),
the 70 remaining data have BMR pMk with k¼0.7570.01 and
R2
¼0.990, a startlingly good fit for Kleiber’s law (Fig. 1). See

also Hinds and Macmillen (1985).
In the light of this, the approach of Kolokotrones et al. (2010) is

perhaps rather surprising. These authors, noting the curvature of
the mammalian metabolic data, described it by introducing a
quadratic term in the logarithmic model, which breaks the scale
invariance of a simple power-law. However, they failed to under-
stand or explore the consequences of this loss of scale invariance.

The key model of Kolokotrones et al. is the fitting of log BMR to
a quadratic polynomial in logM,

logBMR¼ b0þb1logMþb2ðlogMÞ2, ð1Þ

with M measured in grams. This is claimed to be ‘the natural next
candidate’ on the basis of a Taylor expansion, although neither
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physics nor physiology would naturally favour such functional
dependence, since it implies

BMRpMb1 Mb2logM : ð2Þ

Further, the authors’ motivation to choose an ‘analytic function’ is
effectively the desire for a single underlying mechanism which
varies smoothly over many orders of magnitude, with no exo-
genous discontinuities—a strong criterion indeed.

For the mammalian data (McNab, 2008), adding the quadratic
term improves R2 from 0.958 to 0.961, and so accounts for around
one-tenth of the residual variance after allometric scaling. The
authors of Kolokotrones et al. (2010) emphasize its importance in
capturing the data for the megafauna. Fig. 2 shows (a) the
logarithmic data for the eutheria (as only among these is the
curvature effect to be observed) and (b) the residuals of the best
fitting log-linear model, k¼0.722(6). The log-quadratic model
improves R2 from 0.959 to 0.962.

However, taking the logarithm of a dimensionful quantity, as
in (1), is of course impossible. What is actually being computed is
the logarithm of the ratio of the mass to an implicit mass scale
of M0¼1 g. With a further power scale P0, the correct, non-
dimensionalized form of the equation is, writing BMR¼P,

log
P

P0

� �
¼ b0þb1log

M

M0

� �
þb2 log2 M

M0

� �
: ð3Þ
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Fig. 2. Natural logarithms of metabolic rate against mass for the eutheria. Data from McNab (2008). (a) Logarithmic eutherian data. (b) Residuals of allometry with

k¼0.722.
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Suppose now that we choose a different scale M00. Let
m¼ logðM0=M00Þ. Then Eq. (3) becomes

log
P

P0

� �
¼ b0�b1mþb2m2þðb1�2b2mÞlog

M

M00

� �
þb2log2 M

M00

� �
:

ð4Þ

In the simple log-linear, power-law model (b2 ¼ 0, b1 � k), the M-
dependence is unaffected by the transformation, and only the
constant of proportionality eb0 is altered. This model is scale-invariant:
one is fitting a line to the log–log data plot, and a line has no preferred
origin, so that the linear model has no preferred mass scale.

The log-quadratic model (3), in contrast, is not scale-invariant: the
M-dependence varies with m, as we see in (4). Only the coefficient of
the quadratic term is independent of M0. The model fits a quadratic
curve, a parabola, to the log–log data, and so does have a preferred
origin. Of the five parameters b0,b1,b2,M0,P0, only three are inde-
pendent, and indeed the parabola is specified by three parameters,
which might naturally be taken to be b2 and the coordinates of its
turning point. Thus the curve has a unique intrinsic mass scale, that of
the turning point, at which the formula for the curve simplifies to
become purely quadratic and the linear term vanishes.

This affects the claimed results profoundly. In particular, the
values and quoted significances of the linear term are artefacts of
the choice of M0, here 1 g. Thus, and at the risk of pointing out what
will be obvious to many readers, no meaning should be imputed to
the values (or t-test p values) of b1 in Table 1 of Kolokotrones et al.
(2010). Further, the significances ascribed to the quadratic terms
should be treated with caution, precisely because they are invariant
under changes of mass scale: the significance is the same as that of a
pure quadratic model at its preferred mass scale. Rather the natural
approach would be to test for quadratic dependence (in the variation
of logM about its mean) of the residuals from the best-fitting linear
model. If one does this for all the eutheria, the quadratic term remains
significant.

However, precisely the log-quadratic model (1) was fitted to
eutherian data 25 years ago in Hayssen and Lacy (1985) (not cited
in Kolokotrones et al., 2010), where it was rejected in favour of
separate linear models for each Order.1 The approach
of Kolokotrones et al. (2010) is to condition on Order (or other
1 This was principally on the grounds that the former had R2
¼0.85 and the

latter R2
¼0.77, although Hayssen and Lacy (1985) also incorrectly cited a non-

nested F-test in support. Thanks to Walter Fontana for pointing this out.
explanatory environmental or physiological factor) and then test
the log-quadratic model. If one instead adopts the approach
recommended above, of fitting the residues of the best-fitting
linear model to some multiple of the square of the variation of
logM about its mean, significances are greatly reduced: of all the
mammalian orders, only for the Rodentia is a quadratic fit
significant at the 5% level (with p¼0.02), and the quadratic term
accounts for only 0.02 of the variance.

In the light of this note, then, claims for descriptive or explanatory
worth of the log-quadratic model of curvature in metabolic scaling
should be treated with scepticism. Indeed, it should be evident
from Fig. 2(b) that any search for a single nonlinear function to
explain the residuals of simple allometry is likely to be fruitless.
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