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• Exact solutions describing random walker positions on a growing network are provided.
• Accurate approximations for pair probabilities are provided in quasi-stationary case.
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a b s t r a c t

We present continuum models that describe the evolution of the position of a random
walker on a growing network using four different growth algorithms. Three of these
involve a random element, including one in which the motility rate of the random
walker controls the network topology. For motility rates in which the position of the
walker can be treated as quasi-stationary, we present accurate approximations to replace
pair probabilities that allow us to numerically solve an otherwise intractable system of
equations.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Many systems of scientific interest can be modeled as dynamic processes situated on growing networks. These systems
include technological structures such as the internet, social networks, and biological networks such as the vascular system
and the mammalian brain [1–3]. The development of methods to model the behavior of dynamic processes situated on
growing networks is still in progress however, as it presents numerous technical challenges [4–6]. In light of this, we
demonstrate how to derive equations for the temporal evolution of probability distributions that describe the position
of a random walker on networks whose growth process admits varying degrees of randomness. This work can be seen
as an extension to previously presented results that describe the behavior of random walkers on growing lattices [7–
9]. Continuum models often provide useful simplifications of complex stochastic systems affording insight not always
apparent from studying simulation output alone. Our use of an unbiased random-walker as the process hosted by the
network also has an intuitive physical interpretation applicable to a range of contexts, such as the diffusion of gases and
heat, or migrating cells in development [10–13]. Furthermore, despite its relative simplicity, the random walker model
can exhibit interesting behavior and can be viewed as a building block to generate more complex models.

The work we present here has two parts. We first present a discrete model of a random walker on a growing network
that always remains fully connected and show how to derive equations describing the temporal evolution of the walker’s
position. Beginning with deterministic network growth allows us to introduce our approach in a simpler setting. We
then present three distinct network growth algorithms that include random components. In two of these the position
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of the random walker on the network does not determine where the network grows. These two processes differ from
each other in that for one growth process the expected node degree is constant, whereas in the other it is not. The third
growth algorithm allows the position of the random walker on the network to determine where the network grows.
In this instance, it has been previously demonstrated that the motility rate of the walker, pm, determines the network
structure [14–18]. For the three cases that allow for randomness in network structure we derive equations describing
the temporal evolution of the degree of the node the random walker finds itself on. This provides an ‘inside’ view of the
evolving network structure. Our approach can be altered to account for the node position of the random walker instead.
As is often the case, the master equations contain pair probabilities that prevent closure. For the case in which the random
walker is fast relative to growth, and is therefore in quasi-equilibrium over the growing network, we present a simple
and accurate approximation that can be used to replace the pair probabilities in these equations. This closure is applicable
to systems in which growth is slow compared to the evolution of a process situated on the network.

2. Results

In all models, we denote the number of nodes in the network at time t by N(t), an integer, and the number of edges at
time t by E(t), also an integer. Each node in the network is uniquely labeled by the number i of the event that introduced
it, i ∈ {1, 2, . . . ,N(t)}. Each node keeps the same label throughout a history (simulation). Thus, when a new node is added
to the network its label is N(t). The degree of a node in the network is denoted by k, and the degree of node i is denoted
by ki.

The initial network contains N0 = N(0) nodes. In all of the network growth algorithms we consider, edges are
undirected and unweighted, and there are no self-edges. The simulation of a model occurs in continuous time and proceeds
according to the standard Monte-Carlo procedure (e.g. [19]) wherein random walker movement and node addition are
modeled as exponentially distributed events in a Markov chain. Attempted random walker movement events occur with
rate pm per unit time. Stochastic network growth occurs by addition of a new (empty) node to the network at rate pg per
unit time and is, therefore, linear. The specific models we consider differ in how a new node attaches to the network.
Throughout this work we compare our equations describing how the position of a random walker evolves in time on a
growing network with numerical ensemble averages from simulation.

2.1. A random walker on a growing fully connected network

We start out with network growth that is deterministic in the sense that there is no randomness in where the new
node attaches to the network. (There is randomness in when a growth event happens.) This scenario offers a simple,
introductory illustration for how to set up a master equation of a growing network. In this model, when a growth event
occurs at time t , a single new node, N(t), is added to the network and attached to all preexisting nodes, so that the
network remains fully connected at all times. There is no limit to the number of nodes from which the network can be
composed. As the network is fully connected, the random walker can move to any node from its current position. We
refer to this model as ‘fully connected network growth’ or FCNG. We provide an explanatory figure in the Supplementary
Material (SM1). We next derive a probability master equation describing the position of the random walker. Although
for simplicity we derive this equation by imagining a single random walker on the network, our results are applicable to
scenarios where there are multiple random walkers on the network, as will become apparent.

To simplify notation, we denote by N the size of the network at time t , thus removing explicit mention of t . We also
assume that the infinitesimal duration δt accommodates at most one event (movement or growth). In view of the FCNG
mechanism, the probability ρN+1(i; t + δt) that a random walker on a fully connected network of size N +1 at time t + δt
will be found at node i ∈ {1, 2, . . . ,N + 1} is given by

ρN+1(i; t + δt) = (1 − δtpg )ρN+1(i; t) + δtpgρN (i; t) − δtpmρN+1(i; t)

+ δtpm
N+1∑
j̸=i

ρN+1(j; t)
N

, i = 1, . . . ,N (1)

ρN+1(N + 1; t + δt) = (1 − δtpg )ρN+1(N + 1; t) − δtpmρN+1(N + 1; t)

+ δtpm
N+1∑

j̸=N+1

ρN+1(j; t)
N

. (2)

Eq. (1) describes the evolution of probabilities associated with nodes that existed in the N-sized network, and so are able
to ‘inherit’ probability mass from the N-sized network via network growth, as well as via the movement of the random
walker on the network. Eq. (2) describes the evolution of probability associated with the new node N + 1. On a network
of size N + 1 this node is not able to inherit probability mass from the N-sized network via network growth, and so only
the movement of the random walker on the network can confer probability mass on to this new node.
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Fig. 1. Comparison of an ensemble average of the FCNG model and Eq. (6). The red dashed lines refer to Eq. (6) for increasing values of N (down
and to the right). The blue lines report ensemble averages from simulation for network sizes N = N0 +1, . . . ,Nstop , with Nstop = N0 +⌈3pg tend⌉ where
⌈·⌉ is the ceiling function and tend the simulated time. Ensemble averages are based on 10,000 replicates of the discrete model. N0 = 5, pm = 10
and pg = 1.

We next sum (1) and (2) over all nodes in the network to obtain
N+1∑
i=1

ρN+1(i; t + δt) = (1 − δtpg )
N+1∑
i=1

ρN+1(i; t) + δtpg
N∑
i=1

ρN (i; t), (3)

and make the following assumption:
N∑
j=1

ρN (j; t) = NρN (i; t) = NρN (t) ∀N. (4)

This assumption is valid if pm ≫ pg , which means the walker is essentially with equal probability at any node i on the
network. Using assumption (4) in (3), re-indexing network size, dividing by δt and taking the limit δt → 0, yields

dρN (t)
dt

= −pgρN (t) + pg

(
N − 1
N

)
ρN−1(t). (5)

Eq. (5) is similar to one previously presented [7] in the context of a ring of nodes. It should be apparent that if we set the
‘dilution’ term, (N − 1/N), to identity Eq. (5) reduces to the evolution equations for the Poisson distribution describing
how many growth events occur in a given time interval. Eq. (5) admits the solution

ρN (t) = ρN0 (0)p
(N−N0)
g

(
N0

N

)
t (N−N0)

(N − N0)!
exp(−pg t), (6)

where ρN0 (0) is the initial concentration of random walkers on the network. If we set n = N − N0 in Eq. (6) then it
reduces to the Poisson distribution multiplied by a prefactor. This solution is appropriate in situations where Eq. (4) is a
valid assumption as seen in Fig. 1. We provide further plots in the Supplementary material at a higher resolution (SM2).

2.2. Random networks

We next consider networks whose growth includes a random element. Our focus is on three growth algorithms. In
‘random degree network growth’ (RDNG), the degree k of the new node is chosen at random up to current network size
N(t), and k nodes from the network are chosen at random without replacement to link to the new node. In ‘random
network growth’ (RNG), the new node has degree 1 and is linked up with one randomly chosen node of the network.1
In ‘walker-induced network growth’ (WING), the new node is linked up with the node at which the random walker is
located. All schemes were introduced previously [3,17,18], however, we provide explanatory figures for all three growth
algorithms in the Supplementary Material (SM1). We first construct a general master equation for network growth with
randomness, into which terms specific to RDNG, RNG, or WING can be inserted. We then discuss this equation specifically

1 Classically, RNG generates a random recursive tree.
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in the context of WING. The derivations of the terms for RDNG and RNG are relegated to the Supplementary Material (SM3
and SM4).

Since the network structure is no longer regular, as in FCNG, it is more meaningful to set up equations that describe
the probability of the walker occupying a node of degree k rather than an individual node i. However, the approach can
be extended to include the node position of the random walker if so desired.

2.2.1. General probability master equation
We denote with ρN ([k]1; t) the probability that a random walker occupies a node of degree k on a growing (random)

network of size N at time t . ρN ([k]1[j]0; t) denotes the probability that the random walker is situated at a node of degree k
(indicated by the superscript 1) and that a node of degree k shares an edge with an unoccupied node of degree j (indicated
by the superscript 0) in a network of size N at time t . Throughout this section, the superscript ‘1’ means a node is occupied
by a random walker, and the superscript ‘0’ means the node is not occupied by a random walker. We refer to probabilities
of this kind as pair probabilities. Moreover, we introduce the term ΓN ([k]1) to mean the probability that, in a network
of size N , a growth event attaches the new node to an occupied node of degree k. The term ΓN ([k]0) has the analogous
meaning but for an unoccupied node of degree k. With this notation, the probability that a random walker occupies a
node of degree k on a growing random network of size N at time t + δt is given by

ρN ([k]1; t + δt) = (1 − δtpg )ρN ([k]1; t)

+ δtpgΓN−1([k − 1]1)ρN−1([k − 1]1; t)

+ δtpg
(
1 − ΓN−1([k]1)

)
ρN−1([k]1; t)

+ δtpm
N−1∑
j=1

(
αkρN ([k]0[j]1; t) − αjρN ([k]1[j]0; t)

)
.

(7)

Here, αk and αj are constants that weigh the movement of the random walker between nodes of different degrees.
For FCNG we have

ΓN−1([k]1) = ΓN−1([k]0) = 0 and ΓN−1([k − 1]1) = ΓN−1([k − 1]0) = 1. (8)

Indeed, Eqs. (8) reduce (7) to the equations describing the position of a random walker on a growing fully connected
network, (1) and (2).

The probability that a node of degree k on a network of size N is unoccupied at time t + δt is

ρN ([k]0; t + δt) = (1 − δtpg )ρN ([k]0; t)

+ δtpgΓN−1([k − 1]0)ρN−1([k − 1]0; t)

+ δtpg
(
1 − ΓN−1([k]0)

)
ρN−1([k]0; t)

+ δtpg [source]

− δtpm
N−1∑
j=1

(
αkρN ([k]0[j]1; t) − αjρN ([k]1[j]0; t)

)
.

(9)

The ‘source’ term in (9) accounts for the rate at which empty nodes are being added to the network in growth events and
depends on the growth mechanism. It will be specified shortly. To complete the equation for the evolution of ρN ([k]1; t)
we proceed as before by rearranging (7) and (9), summing over the network size pertaining to each individual term,2

dividing by δt , and taking δt → 0 in the limit to obtain

dρN ([k]1; t)
dt

= −pgρN ([k]1; t)

+

(
N − 1
N

)
pgΓN−1([k − 1]1)ρN−1([k − 1]1; t)

+

(
N − 1
N

)
pg (1 − ΓN−1([k]1))ρN−1([k]1; t)

+ pm
N−1∑
j=1

(
αkρN ([k]0[j]1; t) − αjρN ([k]1[j]0; t)

)
,

(10)

2 This is a conservation statement similar to that made in the derivation for FCNG. Intuitively, a node in a network of size N has N chances of
being of degree k.
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and
dρN ([k]0; t)

dt
= −pgρN ([k]0; t)

+

(
N − 1
N

)
pgΓN−1([k − 1]0)ρN−1([k − 1]0; t)

+

(
N − 1
N

)
pg (1 − ΓN−1([k]0))ρN−1([k]0; t)

+
1
N
pg [source]

+ pm
N−1∑
j=1

(
αkρN ([k]0[j]1; t) − αjρN ([k]1[j]0; t)

)
.

(11)

We next address the Γ and source terms for RDNG, RNG and WING. In the Supplementary Material (SM3) we show
that for RDNG

ΓN−1([k − 1]1) = ΓN−1([k]1) = ΓN−1([k − 1]0) = ΓN−1([k]0) =
N

2(N − 1)
. (12)

The source term for RDNG is

[source]RDNG =
1

N − 1

N−2∑
j=1

(ρN−1([j]0; t) + ρN−1([j]1; t)), for k < N. (13)

A new node is equally likely to be of any possible degree, hence the factor 1/(N − 1). The addition of an empty node of
degree k is proportional to the probability that the network is of size N−1. We provide the full set of equations for RDNG
in the Supplementary Material (SM4). It should be clear from the derivation of the RDNG master equations how to alter
Eqs. (10) and (11) to account for any desired network degree distribution.

In the case of RNG we have

ΓN−1([k − 1]1) = ΓN−1([k − 1]0) =
1

N − 1
, (14)

and

Γ N−1([k]1) = ΓN−1([k]0) =
N − 2
N − 1

, (15)

with source term

[source]RNG =

N−2∑
j=1

(ρN−1([j]0; t) + ρN−1([j]1; t)), for k = 1. (16)

In RNG, a new node is always of degree k = 1. As in RDNG, the addition of an empty node of degree k = 1 is proportional
to the probability that the network is of size N − 1. The full set of equations for RNG is laid out in the Supplementary
material (SM5).

Finally, in the case of WING, a node will only receive an edge from a new node if it is occupied by a walker:

ΓN−1([k − 1]1) = ΓN−1([k]1) = 1, and ΓN−1([k − 1]0) = ΓN−1([k]0) = 0. (17)

The source term for WING is

[source]WING =

N−2∑
j=1

(ρN−1([j]0; t) + ρN−1([j]1; t)), for k = 1, (18)

and the full set of equations can be found in the Supplementary Material (SM6).
In Fig. 2 we compare degree marginals of simulated ensemble averages with numerical solutions to the WING

equations, (10) and (11) for pm = 0. This is also the case for RNG and RDNG, and shown in the Supplementary material
(SM7).

In setting pm = 0 we have removed the influence of the pair probabilities in Eqs. (10) and (11). For pm > 0, the pair
probabilities evolve according to a set of equations that contain third order terms, which in turn refer to fourth order
terms, and so on. However, if pm ≫ pg , the position of the walker on the growing network can be treated as quasi-static
(with respect to degree). In that case, the probability, Pw , that a walker is located at a given node is proportional to its
in-degree k:

Pw(k) ∝ kP(k), (19)
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Fig. 2. Comparison of ensemble average and master equation for WING in the degree dimension. The blue lines are based on ensemble averages
and plot ρ([k]1; t) =

∑Nstop−1
i=N0

ρi([k]1; t) and ρ([k]0; t) =
∑Nstop−1

i=N0
ρi([k]0; t) with Nstop defined as in the caption of Fig. 1. The red dashed lines are

based on numerical solutions of (10) and (11) for different values of k. Degree k = N0 − 1,N0, . . . ,Nstop − 1 is increasing down and to the right in
all panels. N0 = 5, pm = 0 and pg = 0.1. Ensemble averages are over 10,000 replicates of the simulated WING model. To solve the Eqs. (10) and
(11) we used MATLAB’s ode15s for all network sizes up to Nstop .

where P(k) is the degree distribution of the network. In this quasi-static case, we can therefore approximate the pairwise
probabilities in the following manner:

αjρN ([k]1[j]0; t) ≈

k∑
i=1

j
k
ρN ([k]1; t)ρN ([j]0; t) = jρN ([k]1; t)ρN ([j]0; t), (20)

and

αjρN ([k]0[j]1; t) ≈

k∑
i=1

k
j
ρN ([k]0; t)ρN ([j]1; t) = kρN ([k]0; t)ρN ([j]1; t). (21)

Fig. 3 shows the accuracy of this approximation when used in Eqs. (10) and (11) for the various growth models. As
pm ̸≫ pg the accuracy declines, most notably in the case of WING. This is because in the case of WING as pm approaches
pg the network structure becomes ‘stringy’ and degree–degree correlations become significant [17]. In the Supplementary
material (SM8) we demonstrate this breakdown in accuracy. For RNG and RDNG the network structure is not affected by
pm, and so this breakdown in accuracy does not occur to the same extent. To summarize, the closures in Eq. (20) and (21)
are applicable when growth is slow compared to the evolution of a process situated on the network.

3. Discussion

We presented the construction and approximation of master equations for describing the movement of a random
walker on growing networks based on four network growth algorithms. Three of these include a random element (RDNG,
RNG, WING) and, among these, WING couples the location of growth to the position of the random walker. These growth
procedures capture in a stylized manner different circumstances. For example, some networks grow in a fashion that is
coupled to the behavior of a process situated on them, a scenario encapsulated by WING. Networks of this kind include the
internet whose growth is determined by its usage and the developing brain whereby action potentials (a process situated
on a neuronal network) help shape neuronal architecture (network structure). Given that growing spaces are central to
phenomena of broad scientific interest [1–3], a concise description in terms of master equations can be of general use in
studying them [9,17,18].

We conclude by mentioning further research questions raised by this work. An important problem is to find
approximations for the pair probabilities that are accurate for all walker motility rates. This would widen the applicability
of the master equations presented here to include systems in which the network growth rate is of a magnitude similar to
the motility rate of the walker. Doing so would be especially useful in the case of WING, in which the network structure
is a function of the motility rate of the walker. Alternatively, evolution equations for the associated pair probabilities
could be derived using the approach presented here, approximating the third order probabilities instead. A large body
of work is devoted to addressing pair probabilities in this way [20–26]. It would be interesting to understand whether
such approaches could be deployed to study processes that are more complicated than the simple random walker model
presented here, such as interactions among multiple random walkers or their proliferation.

Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.physa.2019.121117.

https://doi.org/10.1016/j.physa.2019.121117
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Fig. 3. Comparison of an ensemble average from various network growth models and the numerical solutions of (10) and (11) with appropriate
source and Γ terms and second order closure. Panels A, B, C: RDNG; panels D, E, F: RNG; panels G,H,I: WING. The red dashed lines are numerical
solutions of (10) and (11) for different values of k. The blue lines are ensemble averages from simulation. Degree k = N0 − 1,N0, . . . ,Nstop − 1
increases down and to the right in all panels. Ensemble averages are based on 10,0000 replicates. In all cases, N0 = 5, pg = 1, and pm = 100.
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Supplementary Material

SM1. Figure explaining network growth mechanisms
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Figure 4: The four network growth mechanisms we employ in this work. The position of the random
walker on the network is denoted by blue, and the arrow indicates a growth event. The random walker
is able to move between any two nodes that share an edge. The nodes are labelled and keep the same
label throughout a simulation replicate. (a) In FCNG all nodes in the network share an edge, and when
a growth event occurs the new node creates a link to all pre-existing nodes in the network (b) In RNG
when a growth event occurs the new node creates an edge with a node selected uniformly at random from
the pre-existing nodes in the network. (c) In WING when a growth event occurs the new node creates an
edge with the node upon which the random walker is currently situated. (d) In URNG when a growth
event occurs the new node has degree k selected uniformly at random from the set {1, 2, ..., N(t)}, and
then k nodes from the pre-existing network are chosen at random without replacement to link to the
new node.
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SM2. Figures 1 and 3 (a)-(c) at a higher resolution
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Figure 5: Figures 1 and 3 (a)-(c) from the main text plotted with a different y-axis. (a) Figure 1, and
(b)-(d) Figure 3 (a)-(c). All parameters are the same as given in the captions in the main text.

SM3. Derivation of Γ terms for random degree network growth (RDNG)

We derive the probabilities ΓN−1([k−1]1) and ΓN−1([k]1) for RDNG. As the position
of the random walker on the network does not affect RDNG we know

ΓN−1([k − 1]1) = ΓN−1([k − 1]0) = ΓN−1(k − 1), (22)

ΓN−1([k]1) = ΓN−1([k]0) = ΓN−1(k). (23)

Let p(k) be the probability that the degree of a new node added to the network during
a growth event is k, with the axiomatic constraint for p(k) that

N−1∑
k=1

p(k) = 1. (24)

13



The probability that an edge from the new node connects to a node of degree k− 1 in a
network of size N − 1 during a growth event is

ΓN−1(k − 1) = p(1)
1

N − 1
+ p(2)

(
1

N − 1
+

(
1− 1

N − 1

)
1

N − 2

)
+ p(3)

(
1

N − 1
+

(
1− 1

N − 1

)
1

N − 2
+

(
1− 1

N − 1

)(
1− 1

N − 2

)
1

N − 3

)
+ . . . ,

(25)

Equation (25) can be simplified to obtain

ΓN−1(k − 1) =
1

N − 1

N−1∑
n=1

p(k) +
1

N − 2

N−1∑
n=2

p(k)

(
1− 1

N − 1

)

+
1

N − 3

N−1∑
n=3

p(k)

(
1− 1

N − 1

)(
1− 1

N − 2

)
+ . . . ,

(26)

and further simplified

ΓN−1(k − 1) =
1

N − 1

N−1∑
n=1

p(k) +
1

N − 2

N−1∑
n=2

p(k)
N − 2

N − 1

+
1

N − 3

N−1∑
n=3

p(k)
N − 3

N − 1
+ . . . ,

(27)

to arrive at

ΓN−1(k − 1) =
1

N − 1

N−1∑
m=1

N−1∑
n=m

p(k). (28)

Following the same reasoning we obtain

ΓN−1(k) =
1

N − 1

N−1∑
m=1

N−1∑
n=m

p(k).

If p(k) = 1/(N − 1), that is, the degree of the new node is selected uniformly at random
from k ∈ {1, 2, ..., N(t)}, then (28) becomes

ΓN−1(k − 1) =
1

N − 1

N−1∑
m=1

N−1∑
n=m

1

N − 1
=

1

(N − 1)2
N(N − 1)

2
=

N

2(N − 1)
. (29)
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SM4. RDNG probability master equation

The equations describing the evolution of ρN ([k]1; t) when 1 < k < N − 1 take the
form

dρN ([k]1; t)

dt
= −pgρN ([k]1; t)

+ pg
1

2
ρN−1([k − 1]1; t)

+ pg
N − 2

2N
ρN−1([k]1; t)

+ pm

N−1∑
j=1

(
αkρN ([k]0[j]1; t)− αjρN ([k]1[j]0; t)

)
,

(30)

while for k = 1 and k = N − 1 we have

dρN ([1]1; t)

dt
= −pgρN ([1]1; t)

+ pg
N − 2

2N
ρN−1([1]1; t)

+ pm

N−1∑
j=1

(
α1ρN ([1]0[j]1; t)− αjρN ([1]1[j]0; t)

)
,

(31)

and

dρN ([N − 1]1; t)

dt
= −pgρN ([N − 1]1; t)

+ pg
1

2
ρN−1([N − 2]1; t)

+ pm

N−1∑
j=1

(
αN−1ρN ([N − 1]0[j]1; t)− αjρN ([N − 1]1[j]0; t)

)
,

(32)

respectively. The system of equations describing the evolution of ρN ([k]0; t) when 1 <
k < N − 1 takes the form

dρN ([k]0; t)

dt
= −pgρN ([k]0; t)

+ pg
1

2
ρN−1([k − 1]0; t)

+ pg
N − 2

2N
ρN−1([k]0; t)

+
1

N

pg
N − 1

N−2∑
j=1

(
ρN−1([j]0; t) + ρN−1([j]1; t)

)
− pm

N−1∑
j=1

(
αkρN ([k]0[j]1; t)− αjρN ([k]1[j]0; t)

)
,

(33)
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while for k = 1 and k = N − 1 we have

dρN ([1]0; t)

dt
= −pgρN ([1]0; t)

+ pg
N − 2

2N
ρN−1([1]0; t)

+
1

N

pg
N − 1

N−2∑
j=1

(
ρN−1([j]0; t) + ρN−1([j]1; t)

)
− pm

N−1∑
j=1

(
α1ρN ([1]0[j]1; t)− αjρN ([1]1[j]0; t)

)
,

(34)

and

dρN ([N − 1]0; t)

dt
= −pgρN ([N − 1]0; t)

+ pg
1

2
ρN−1([N − 2]0; t)

+
1

N

pg
N − 1

N−2∑
j=1

(
ρN−1([j]0; t) + ρN−1([j]1; t)

)
− pm

N−1∑
j=1

(
αN−1ρN ([N − 1]0[j]1; t)− αjρN ([N − 1]1[j]0; t)

)
,

(35)

respectively.

SM5. Random network growth (RNG) probability master equation

The equations describing the evolution of ρN ([k]1; t) when 1 < k < N − 1 are

dρN ([k]1; t)

dt
= −pgρN ([k]1; t)

+ pg
N − 1

N
ρN−1([k − 1]1; t)

+ pm

N−1∑
j=1

(
αkρN ([k]0[j]1; t)− αjρN ([k]1[j]0; t)

)
,

(36)

while for k = 1 and k = N − 1 we have

dρN ([1]1; t)

dt
= −pgρN ([1]1; t)

+ pm

N−1∑
j=1

(
α1ρN ([1]0[j]1; t)− αjρN ([1]1[j]0; t)

)
,

(37)
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and

dρN ([N − 1]1; t)

dt
= −pgρN ([N − 1]1; t)

+ pg
N − 1

N
ρN−1([N − 2]1; t)

+ pm

N−1∑
j=1

(
αN−1ρN ([N − 1]0[j]1; t)− αjρN ([N − 1]1[j]0; t)

)
,

(38)

respectively. The system of equations describing the evolution of ρN ([k]0; t) when 1 <
k < N − 1 take the form

dρN ([k]0; t)

dt
= −pgρN ([k]0; t)

+ pg
1

2
ρN−1([k − 1]0; t)

+ pg
N − 2

2N
ρN−1([k]0; t)

+
1

N

pg
N − 1

N−2∑
j=1

(
ρN−1([j]0; t) + ρN−1([j]1; t)

)
− pm

N−1∑
j=1

(
αkρN ([k]0[j]1; t)− αjρN ([k]1[j]0; t)

)
,

(39)

while for k = 1 and k = N − 1 we have

dρN ([1]0; t)

dt
= −pgρN ([1]0; t)

+ pg
N − 2

2N
ρN−1([1]0; t)

+
1

N

pg
N − 1

N−2∑
j=1

(
ρN−1([j]0; t) + ρN−1([j]1; t)

)
− pm

N−1∑
j=1

(
α1ρN ([1]0[j]1; t)− αjρN ([1]1[j]0; t)

)
,

(40)

and

dρN ([N − 1]0; t)

dt
= −pgρN ([N − 1]0; t)

+ pg
1

2
ρN−1([N − 2]0; t)

+
1

N

pg
N − 1

N−2∑
j=1

(
ρN−1([j]0; t) + ρN−1([j]1; t)

)
− pm

N−1∑
j=1

(
αN−1ρN ([N − 1]0[j]1; t)− αjρN ([N − 1]1[j]0; t)

)
,

(41)
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respectively.

SM6. Walker-induced network growth (WING) probability master equation

The equations describing the evolution of ρN ([k]1; t) for WING when 1 < k < N − 1
are

dρN ([k]1; t)

dt
= −pgρN ([k]1; t)

+ pg
N − 1

N
ρN−1([k − 1]1; t)

+ pm

N−1∑
j=1

(
αkρN ([k]0[j]1; t)− αjρN ([k]1[j]0; t)

)
,

(42)

while for k = 1 and k = N − 1 we have

dρN ([1]1; t)

dt
= −pgρN ([1]1; t)

+ pm

N−1∑
j=1

(
α1ρN ([1]0[j]1; t)− αjρN ([1]1[j]0; t)

)
,

(43)

and

dρN ([N − 1]1; t)

dt
= −pgρN ([N − 1]1; t)

+ pg
N − 1

N
ρN−1([N − 2]1; t)

+ pm

N−1∑
j=1

(
αN−1ρN ([N − 1]0[j]1; t)− αjρN ([N − 1]1[j]0; t)

)
,

(44)

respectively. The system of equations describing the evolution of ρN ([k]0; t) for WING
are

dρN ([k]0; t)

dt
= −pgρN ([k]0; t)

+ pg
N − 1

N
ρN−1([k]0; t)

− pm
N−1∑
j=1

(
αkρN ([k]0[j]1; t)− αjρN ([k]1[j]0; t)

)
,

(45)

18



while for k = 1 and k = N − 1 we have

dρN ([1]0; t)

dt
= −pgρN ([1]0; t)

+ pg
N − 1

N
ρN−1([1]0; t)

+ frac1Npg

N−2∑
j=1

(
ρN−1([j]0; t) + ρN−1([j]1; t)

)
− pm

N−1∑
j=1

(
α1ρN ([1]0[j]1; t)− αjρN ([1]1[j]0; t)

)
,

(46)

and

dρN ([N − 1]0; t)

dt
= −pgρN ([N − 1]0; t)

− pm
N−1∑
j=1

(
αN−1ρN ([N − 1]0[j]1; t)− αjρN ([N − 1]1[j]0; t)

)
,

(47)

respectively.

SM7. RDNG when pm = 0
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Figure 6: Comparison of ensemble averages for RDNG and numerical solutions of equations (10) and (11)
in the main text. The red dashed lines are the numerical solutions of (10) and (11) for different values of k.
The blue lines are the corresponding ensemble averages. Increasing degree k = −N0−1, N0, . . . , Nstop−1
is down and to the right in all panels. Ensemble averages are taken from 10, 000 replicates. N0 = 5,
pm = 0 and pg = 0.1
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SM8. Validity of quasi-static approximation when pm = pg

0 5 10 15 20
0.00

0.05

0.10

0.15

0.20

0 5 10 15 20
0.00

0.20

0.40

0.60

0.80

0 5 10 15 20
0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
0.00

0.05

0.10

0.15

0.20

0 5 10 15 20
0.00

0.20

0.40

0.60

0.80

0 5 10 15 20
0.00

0.25

0.50

0.75

1.00

ρ
([
k
]1
;t
)

ρ
([
k
]0
;t
)

ρ
([
k
]1
;t
)
+

ρ
([
k
]0
;t
)

ρ
([
k
]1
;t
)

ρ
([
k
]0
;t
)

ρ
([
k
]1
;t
)
+

ρ
([
k
]0
;t
)

Time Time Time

Time Time Time

A B C

D E F

Figure 7: Comparison of an ensemble average for RNG and WING and the numerical solutions of
equations (10) and (11) with appropriate source and Γ terms and second order closure. Panels A, B, C:
RNG; panels D, E, F: WING. The red dashed lines are numerical solutions of (10) and (11) for different
values of degree k = N0 − 1, N0, . . . , Nstop − 1. The blue lines are ensemble averages based on 10, 0000
replicates. In all cases, N0 = 5, pg = 1, and pm = 1.
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