
Abstracting the differential semantics of rule-based models:
exact and automated model reduction

(Invited Lecture)

Vincent Danos∗§, Jérôme Feret†, Walter Fontana‡, Russell Harmer‡§ and Jean Krivine§
∗University of Edinburgh

†LIENS, INRIA-ENS-CNRS
‡Harvard Medical School

§CNRS, Université Paris-Diderot

Abstract—Rule-based approaches (as in our own Kappa [1],
[2], or the BNG language [3], or many other propositions al-
lowing the consideration of “reaction classes”) offer new and
more powerful ways to capture the combinatorial interactions that
are typical of molecular biological systems. They afford relatively
compact and faithful descriptions of cellular interaction networks
despite the combination of two broad types of interaction: the
formation of complexes (a biological term for the ubiquitous non-
covalent binding of bio-molecules), and the chemical modifications
of macromolecules (aka post-translational modifications).

However, all is not perfect. This same combinatorial explosion
that pervades biological systems also seems to prevent the simula-
tion of molecular networks using systems of differential equations.
In all but the simplest cases the generation (and even more the
integration) of the explicit system of differential equations which is
canonically associated to a rule set is unfeasible (eg, see Ref. [4],
[5] for examples). So there seems to be a price to pay for this
increase in clarity and precision of the description, namely that
one can only execute such rule-based systems using their stochastic
semantics as continuous time Markov chains, which means a slower
if more accurate simulation.

In this paper, we take a fresh look at this question, and, using
techniques from the abstract interpretation framework [6], we con-
struct a reduction method which generates (typically) far smaller
systems of differential equations than the concrete/canonical one.
We show that the abstract/reduced differential system has solutions
which are linear combinations of the canonical ones. Importantly,
our method: 1) does not require the concrete system to be explicitly
computed, so it is intensional, 2) nor does it rely on the choice of
a specific set of rate constants for the system to be reduced, so
it is symbolic, and 3) achieves good compression when tested on
rule-based models of significant size, so it is also realistic.

I. INTRODUCTION

One of the major conceptual shift in modern biology is

the gradual realization that proteins often decompose into

clearly identifiable independent substructures called domains
(among which specific recognition sites), which when suit-

ably combined into a protein will determine a particular

set of molecular functions [7]. There is a hitherto hidden

alphabet of relatively few domain families that combine

into the amazing variety of proteins and functions thereof

(and incidentally, the archeology of domains has confirmed

that innovation is by and large obtained by recombination

of existing domains). As the ways in which domains in-

teract within and between these modular proteins become

better known, rudimentary forms of engineering of protein

networks become possible (eg see Refs. [8]–[10] where in
vivo rewirings of protein networks based on domain recom-

binations are investigated). Clearly this new ontology of

the universe of biomolecules has fundamental consequences

on the way protein networks should be formally described

and modelled, and perhaps more importantly on the fashion

in which they should be conceptualized as a computing

medium. In particular, in order to express interactions in

terms of domains, one needs another and more flexible

mechanism than traditional reactions (aka Petri nets, or

multiset rewriting). Because domain interactions will define

whole classes of reactions at once, and because one wants to

make these classes first class objects, one needs to be able

to stipulate interactions at a refined level of granularity. That

is the common idea at the heart of the various attempts at

rule-based modelling languages.

In our own particular approach [11] (or that of the BNG

language [12]), one has agents with sites that can be used to

hold internal states and/or bind other sites - modelling both

binding domains and chemically modifiable ones. Species,

which within this paper will be taken to mean any complex

structure that one can obtain by binding basic agents, now

have an explicit internal structure. As a result, elements of

the dynamics can be defined by a modeller without having

to spell out a complete description of the species it applies

to. To do so she/he writes rules specifying conditions under

which elementary bindings and modifications happen. It

must be noted that several similar agent-based languages

have been proposed, some of them derived from the tradition

of process algebras [13]–[16]. In practice using process-

centric approaches requires some ingenuity and results in

a measure of encoding which makes further static analyses

difficult (another potential limiting factor is that process

calculi allow for the expression of many artefactual systems

that have no meaning in terms of biochemical interactions).

From that point of view, Kappa and BNGL strike a nice

trade-off offering both process-algebraic conciseness and a

straightforward expression of the domain combinatorics, that

ultimately facilitates the analysis of networks [17]. It is

also worth spelling out that Kappa is but an idealization

2010 IEEE Conference on Logic in Computer Science

1043-6871/10 $26.00 © 2010 IEEE

DOI 10.1109/LICS.2010.44

362

2010 25th Annual IEEE Symposium on Logic in Computer Science

1043-6871/10 $26.00 © 2010 IEEE

DOI 10.1109/LICS.2010.44

362

of the relevant phenomenology of biomolecular networks

as it leaves aside lower-scale effects such a steric hindrance,

conformational changes etc, or phenomena relating to spatial

organization such as diffusion, transport and membrane-

related interactions.

A. The problem with rules

Now to the point of the paper. Systems of ordinary differ-

ential equations (ODEs) are widely used to probe the dynam-

ics of biomolecular networks. As might be expected from

the above explanations, the design of ODE models (usually

based on systems of reactions) is a time-consuming process,

as combinatorial complexity is avoided by deploying ad
hoc successive approximations such as neglecting certain

species or quotienting others [5]. This makes the resulting

models hard to document, as this necessary complexity

avoidance manoeuvering can only be based on intuitions

and is therefore not an integral part of the description of

the model - and in addition one has no means of controlling

its impact on the dynamics. (In fact, one wonders what the

quality of an intuition that one must have is!) By the same

token, such models are even harder to modify, since any

modification propagates throughout the model. Besides, the

very process ties the choice of parameters to the preliminary

approximation step, which is tantamount to foregoing a

mechanistic interpretation of the said parameters. Yet, there

is also an upside to their simplicity, as they can be simulated

efficiently. Not so for rule-based models, as in all but the

simplest cases, the explicitation of the underlying differential

semantics is completely unfeasible (either because the dif-

ferential system is infinite, or finite but too large to ever be

written). It seems one has to pay a price for the use of rules,

and forego their manipulation and study via a deterministic

dynamics.

The object of this paper is to prove that this does not

need to be the case, as it describes a method to generate

a reduced differential semantics of any rule-based model.

This reduced differential semantics is based on a linear

change of variables, the computation of which is driven by

the set of rules constituting the model (which is to say, it

is sensitive to the presentation of the implicit dynamics as

usual in static analysis). To find our reduction, we develop

an analysis to detect which parts of our agents can influence

the behaviour of other parts in the context of a given rule

set. This mode of reasoning is reminiscent of dependency

detection techniques used to prove that sensitive data does

not depend on less sensitive data [18]. This analysis is then

used to break down species (of which there are too many)

into (typically) far fewer fragments, the behaviour of which

can be self-consistently described by a reduced differential

system. The derivation of the reduced system is proved

to be sound by abstract interpretation: trajectories of the

reduced systems are the projection of the trajectories of the

original one (which is never explicitly computed). There is

no approximation involved, and in particular the actual rate

constants of the rules in the rule set are treated symbolically.

The algorithm that finds a set of fragments for a rule

set is implemented (and downloadable together other Kappa

related tools at kappalanguage.org). While we prove the

correctness of our method, it comes with no guarantee

that the reduced system will be smaller than the original

one, and it is actually easy to construct examples that will

defeat the analysis and result in no compression at all. So

the question of the value of the method is a delicate one

that cannot be decided by a theorem. However there is

evidence that on actual models, the method performs well.

Specifically, we have tried many examples among which the

largest is a pilot model of a large and detailed section of

the EGF system involving about 1019 species. The analysis

produces about 105 fragments - few enough to yield a

differential semantics of the model which is executable. The

fragmentation process itself lasts about 15′ in this example,

and since it is independent of the rate constants of the

rules, it is enough to run it only once per rule set. Another

consequence of the reduction being symbolic is that one can

complement the exact reduction we propose with traditional

approximate ones and obtain far better reductions when

rate constants are known or posited. Further examples and

explanations about the wider relevance of the present work

to modelling in a biological context can be found in Ref. [19]

(and its supplementary information).

B. Related work

Abstract interpretation has been widely used to approx-

imate qualitative properties such as the potential configu-

rations of biological systems [20]–[24] or their temporal

properties [25]. In this paper, however, we consider quan-
titative properties as we abstract the system of differential

equations/dynamical systems attached to such systems. In

particular, the analysis we present here is different from

our own reachability analysis in Ref. [24] which focuses on

qualitative properties, and unlike the present one, can deal

with dependencies only within a single agent.

Having said that, many quantitative static analysis meth-

ods already exist. Typically one tries to over-approximate

the ranges of variables in continuous or discrete differential

systems. In Refs. [26]–[28], discrete integration methods

are proposed. In the field of reactive systems, suitable

abstractions deal with ranges of variables: in Refs. [29],

[30], abstract domains which discover and prove inductive

invariants on output ranges of linear recursive filters are

introduced; in Ref. [31] a framework allows to handle

accurately the differential specification of numerical inputs

of reactive systems; and static analyses are proposed in

Ref. [32] to bound the error due to numerical integration.

Our abstraction differs from all of the above as it does not

attempt to abstract numerical values, but to find a reduced

dynamical system.

363363

The field of biomathematics has seen several propositions

with the same ambitions, building on the actual particular

structures of dynamical systems generated by reactions. In

Ref. [33], [34], invertible changes of variables are used to

block-diagonalize ODEs. Yet it is clearly preferable to avoid

computing the starting ODEs at all, and our method indeed

computes the reduced ODEs directly from the set of rules.

The approach proposed in Ref. [35] does not presuppose

an explicit ODE system, however, it is not automated and

suffers from a combinatorial blow-up in the (rather common)

case of chains of agents and site modifications that propagate

through bindings [36, p. 82–83]. One can solve this problem

by neglecting certain species, but then the dynamics of the

system is not preserved. The framework in Ref. [37], for au-

tomatically reducing the ODEs of protein networks, suffers

from the same lack of soundness when site modifications

propagate through bindings. Our approach deals efficiently

with this case.

Finally, abstract interpretation has also been used to anal-

yse stochastic semantics. In [38], [39], a generic framework

has been introduced in order to lift numerical domains

to probabilistic semantics featuring non-determinism. This

framework has inspired work for the abstraction of Markov

chains generated by systems of ground reactions [40]. Our

generic framework has stronger similarities with Ref. [41]

which aims at abstracting stochastic distributions. However,

our framework deals with differential semantics and, more

to the point, is applied to a particular range of models that

are of direct relevance.

C. Outline

We first discuss a system reduction performed on a simple

set of reactions (§II). This example is the occasion to

introduce the main intuitions and some of the terminology

used further in the paper. Then, we introduce a notion of

reduction for a differential system (§III) using concepts

familiar from the framework of abstract interpretation. Once

this is in place, we define Kappa formally -which means we

have to deal with the unavoidable syntax of rules and rule

application (§IV), after which we can turn to the definition

of its ground/concrete differential semantics (§V). After that

we turn to the key construction, namely the dependency

analysis on which the reduction method relies (§VI) and

which returns a set of new variables or fragments. From

there we can define our abstract/fragment-based differential

semantics (§VII), and prove its soundness (not an easy

proof!). Some numerical experimental results are reported

(§VIII) - while these are not strictly necessary, we felt that

they added to the end-to-end quality of the work we present

here, which goes from a rather theoretical premise to the

concrete results of an implementation.

An earlier version of our results appeared in Ref. [19].

The present paper however is of a more technical nature,

and is the first which has a complete proof of the soundness

of the reduction method. The proof and its setup are rather

dense, and perhaps not as perspicuous as they could be, but

hopefully the few ideas behind the construction will be clear

to the reader.

II. PROLOGUE

We describe in this section a simple reaction system

and explain how the induced differential system can be

decomposed into smaller ones. In the remainder of the

paper, we will generalize in a non trivial way this kind of

compression to differential systems induced by sets of Kappa

rules, and show how one can derive a general algorithm to

discover and perform such compressions.

Consider an agent B able to bind reversibly and simul-

taneously agents A and C. This means we have 6 possible

species, A, B, C, and AB, BC, ABC. Let us also suppose

that B is introduced into the system at some rate σ. This

gives us the following set of reactions (rate constants are

indicated next to each reaction; for reversible binding rules

the first constant is the association one, the second is the

dissociation one):

→ B σ
A, B ↔ AB kA, k′

A

A, BC ↔ ABC kA, k′
A

B, C ↔ BC kC , k′
C

AB, C ↔ ABC kC , k′
C

The mass action principle states that a reaction’s rate is given

by its rate constant times the concentrations of its reactants.

For instance the rate at which A binds B is kA[A][B], where

[A] is the traditional notation for the concentration of A (the

number of As per unit volume). This gives us the associated

differential system describing the time derivative of each of

the 6 possible species:

[A]′ = k′
A([AB] + [ABC]) − kA[A]([B] + [BC])

[C]′ = k′
C([BC] + [ABC]) − kC [C]([B] + [AB])

[B]′ = σ + k′
A[AB] + k′

C [BC] − [B](kA[A] + kC [C])

[AB]′ = kA[A][B] + k′
C [ABC] − [AB](k′

A + kC [C])
[BC]′ = kC [B][C] + k′

A[ABC] − [BC](k′
C + kA[A])

[ABC]′ = kA[A][BC] + kC [AB][C] − [ABC](k′
A + k′

C)

Note that the differential system is autonomous, meaning

that the time derivatives of variables do not explicitly depend

on time. Fixing some values for the rate constants, and the

initial state of the system, we can integrate it. Fig. 1 gives

an illustration of the non-monotonic time course of [ABC].
We have assumed that the association and dissociation rate

constants of A and B, kA and k′
A, are the same whether

or not B is bound to C, and similarly for the association

and dissociation rate constants kC , k′
C of B and C. We can

exploit this symmetry and split the system into an A and a

C subsystem by introducing the following new variables:

[AB?] := [AB] + [ABC]
[B?] := [B] + [BC]

364364

Figure 1. The time course of [ABC]; one sees that the system eventually
reaches larger concentrations of B where ABCs are diluted away. (The
initial state consists of 100 As and Cs, and zero Bs; all rate constants
are set to 1, as well as the volume correction; the plots are obtained using
Maple.).

and we get the following differential system for the A
subsystem:

[A]′ = k′
A[AB?] − kA[A][B?]

[AB?]′ = [AB]′ + [ABC]′ = kA[A][B?] − k′
A[AB?]

[B?]′ = [B]′ + [BC]′ = σ + k′
A[AB?] − kA[A][B?]

The point of this (linear) change of variables is that it

produces a system where the derivatives of [A], [AB?], [B?]
can be expressed as functions of themselves. We say that our

new set of variables is self-consistent, and we call these new

variables fragments (a name which is supposed to remind the

reader that fragments are partial species). In a similar fashion

one can write a self-consistent differential system for the C
subsystem using the variables [C], [?BC] := [BC]+[ABC],
and [?B] := [B]+[AB]. Now, if we are interested in the time

course of any of the above fragments/new variables, all we

need to know is the three equations subsystem the fragment

belongs to. Thus, we have achieved an exact reduction of

the original system.

One could ask conversely if the information contained

in the A and C subsystems is enough to reconstruct the

original system. Specifically, is there a way to express (any

of) [ABC], [AB] or [BC], as a function of the new variables.

It is easy to see that the linear mapping of the six old

variables to the 6 new ones is of rank 5, and so not invertible.

Nevertheless, one could think of reconstructing non-linearly

the old variables by exploiting the idea that whether a B is

bound to an A is independent of whether it is bound to a

C. Suppose we set [?B?] := [?BC] + [?B] = [AB?] + [B?]
for the total concentration of B, we can then express the

fraction of Bs with:

- both an A and a C attached as [ABC]/[?B?],
- an A attached as [AB?]/[?B?],
- and with a C attached as [?BC]/[?B?].

Figure 2. The time course of a variant of the occupancy correlation
on B, defined as [ABC] − [AB?][?BC]/[?B?]. If B’s bindings were
independent, it should be identically zero, and we do see a tiny deviation
from zero which lags behind the production of ABC and eventually washes
away for large times.

If bindings are independent, the first expression is the

product of the two remaining ones. Equivalently, one has

[ABC][?B?] = [AB?][?BC], which means [ABC] (and

hence all the other old variables) can be expressed in

terms of the new variables. But Fig. 2 shows (for some

arbitrary values of the various needed parameters) that the

reconstruction is wrong - ie, there is a correlation between

the B bindings.

We can look further into this simple example and define

χ := [ABC][?B?] − [AB?][?BC] as a measure of non-

independence. When χ > 0, the presence of A and C
correlate positively. A bit of symbol-pushing gives a closed

formula for the time derivative of χ:

χ′ = σ[ABC] − χ(kA[A] + kC [C] + k′
A + k′

C)

Clearly, and unless σ = 0, χ will not be everywhere

zero. Although there is no apparent constraint between

B’s bindings, knowing if B is bound to an A does give

information about when that B was created, which affects

how likely it is that it is also bound to a C. One could say, by

analogy with problems of non-interference, that there is an

implicit information flow [18] which induces a correlation

- here measured by χ. Yet, the set of reactions defining the

differential system never observes that correlation.

This example, to which we will return, teaches us two

things. Firstly, and most importantly, one can exploit struc-

tural features of a given differential system to identify sets

of fragments, ie specific linear combinations of the system

variables that have a self-consistent dynamics - seeing how

this can be done in the case where the dynamics is described

by rules, and not just reactions, is the main goal of this

paper. As we will see, working with rules is an advantage

here, as one can read directly the reduction from the rules

without having to ever explicitly consider the ground set

365365

of reactions the rules correspond to. Secondly, even though

a set of fragments is independently solvable, in general its

behaviour (in our example the time courses of the subsystem

variables [A], [AB?], [B?], etc.) is not enough to recover

that of the original system - perhaps unsurprisingly, some

information can be lost in the reduction.

III. EXACT REDUCTION OF DIFFERENTIAL SYSTEMS

Before we turn to the syntax of rules, we need to define

the specific notion of linear reduction of an autonomous dif-

ferential system that we will use in the remainder of the text.

It is inspired by the methodology of abstract interpretation

(AI), a general framework for approximating the semantics

of programs [6]. Hence, it might be worth pointing out the

correspondence with traditional AI concepts: our notion of

reduction (defined below) can be seen as an abstraction
map, that is to say a transformation going from a concrete
state space (here the concentrations of all species) to an

abstract one (here the concentrations of all fragments).

The reduced dynamics corresponds to that of a backward
complete counterpart [42], [43] to the concrete dynamics.

Let V be a finite set.

Maps from V to R form a normed vector space with norm:

‖ρ‖ := maxX∈V |ρ(X)|
where | | denotes the absolute value. For U a subset of

V → R
+, define ‖U‖ = supρ∈U ‖ρ‖ ≤ +∞.

If V is a set of species, and ρ(X) the concentration of

X , then ‖ρ‖ controls the total number (per unit volume) of

species in the system.

A ρ such that for all X ∈ V , ρ(X) ≥ 0 is called a state,

and we write simply ρ ≥ 0. We write ρ[X → r] for the state

that maps X to r ≥ 0 and otherwise is as ρ.

Consider another finite set V ′, and a map ψ from V → R

to V ′ → R, we say ψ is:

- positive if for all ρ ≥ 0, ψ(ρ) ≥ 0;

- expansive if for all subset U of V → R
+, ‖ψ(U)‖ < ∞

implies ‖U‖ < ∞.

Definition III.1. A (positive autonomous) differential system
over V is a map F from V → R to V → R:
- which is continuously differentiable, and for which
- there exists ε > 0, and a family of positive and continuous
maps GX from V → R to V → R such that, for all ρ ≥ 0,
and X in V , if ρ(X) < ε then:

−ρ(X) · GX(ρ[X → 1]) ≤ F(ρ)(X)

By the Cauchy-Lipschitz theorem [44], F defines for any

initial state ρ0, a unique maximal differentiable f : [0, T) →
V → R such that f(0) = ρ0, and f ′ = F◦f , with T ≤ +∞.

This unique f is called a solution of F, sometimes written

fρ0 to make the dependency in the initial state explicit.

Note that it may be that T < +∞: consider reaction

2A → 3A, one has f ′(t) = k[A]2 and the maximal solution

f(t) = 1/(A0 − kt) is only defined on [0, A0/k).

The GX family ensures that, starting from a positive

initial state, if ρ(X) gets close enough to zero, its derivative

F(X)(ρ) becomes bounded below, so can’t get too negative,

so that ρ(X) never reaches negative values.

In our application, V is the set of species generated by

a molecular network, and F is given by mass action (as

in §II). The repelling property is clearly satisfied since any

negative contribution to F(ρ)(X) comes from a reaction that

consumes X , and therefore must be of the form −k ·ρ(X) ·
ρ(Y1) . . . ρ(Yn).

Definition III.2. A reduction of a differential system F over
V is a commuting square:

R
V F ��

ψ

◦

R
V

ψ

◦
R

V� F
�

��
R

V�

where V� is a finite set of (abstract) variables, ψ is a
positive, expansive and linear map from V → R to V� → R,
and F

� is a differential system over V�.

Note that since ψ is positive, by definition, it maps states

to states. Nevertheless, we need values in R and not just

R
+ so that we can apply the abstraction function ψ also to

vectors of derivatives F(ρ) which are not positive.

We can infer a strong form of soundness for our notion

of reduction:

Theorem III.3 (soundness). T = T � and f �
ψ(ρ0)

= ψ ◦ fρ0 .

Proof: For t < T , one has:

(ψ ◦ fρ0)
′(t) = ψ(f ′

ρ0
(t))

= ψ(F(fρ0(t)))
= F

�((ψ ◦ fρ0)(t))

because ψ is linear (first equation), fρ0 is a solution of F

(second equation), and ψ◦F = F
� ◦ψ by assumption. Hence

ψ◦fρ0 is differentiable on [0, T), and it is a (unique) solution

of F
� for the initial condition ψ(fρ0(0)) = ψ(ρ0) on [0, T).

In other words, on [0, T), we have:

ψ ◦ fρ0 = f �
ψ(ρ0)

It follows that T ≤ T �. But, in fact, T = T �. To see this,

suppose T < ∞, then ‖fρ0(t)‖ diverges as t tends to T , and

ψ being expansive, so does ‖ψ(fρ0(t))‖.

A simple consequence is that for t ∈ [0, T) = [0, T �):

0 ≤ f �
ψ(ρ0)

(t)

Thus our reduction guarantees that: 1) trajectories of abstract

variables can be computed directly in the abstract domain

without loss of information; 2) positivity is preserved; 3) the

life-time of the system is also preserved. (This is in contrast

with syntactic program slicing that may not preserve non-

termination - see eg [45], [46]).

366366

A. Back to the example of §II

We can return to the example of §II, to illustrate the above

definitions. The set V of concrete variables is A, B, C, AB,

BC, and ABC, while the differential system F is given in

new notation as:

F(ρ)(A) = −kA · ρ(A)(ρ(B) + ρ(BC))
+k′

A(ρ(AB) + ρ(ABC))

and similarly for the other terms.

The set V� of abstract variables is A, AB?, B?, C, ?B,

and ?BC, and the linear map ψ is given by:

ψ(ρ)(A) = ρ(A)
ψ(ρ)(AB?) = ρ(AB) + ρ(ABC)
ψ(ρ)(B?) = ρ(B) + ρ(BC)

and similarly for other terms. The abstract counterpart to F,

written F
�, is given by (we write ρ� for an abstract state,

that is to say a map from V� to R
+):

F
�(ρ�)(A) = k′

A · ρ�(AB?) − kA · ρ�(A) · ρ�(B?)

and similarly for the other terms. And one can check

the commutativity condition which expresses the self-

consistency of ψ. If we verify it for A, we get:

ψ(F(ρ))(A) = F(ρ)(A)
= −kA · ρ(A) · (ρ(B) + ρ(BC))

+k′
A · (ρ(AB) + ρ(ABC))

= −kA · ψ(ρ)(A) · ψ(ρ)(B?)
+k′

A · ψ(ρ)(AB?)
= F

�(ψ(ρ))(A)

IV. KAPPA

We now introduce Kappa, which, in essence, is a certain

type of graph rewriting system. We are going to introduce

both a process-algebra notation (as in Ref. [11]), and a

straight graphical notation. The former simplifies the pre-

sentation of the qualitative operational semantics, especially

regarding finer notions of matching (using wildcards and

binding types, see below) and the notion of inverting a

rule - both of which we will need. It is also closer to

our actual implementation. However, as for any process

notation, and despite the fact that Kappa is a rather simple

formalism, it can become cumbersome when it comes to

the quantitative semantics where combinatorics and counting

come to the fore. This is best done with a plain geomet-

ric/graphical view. Thus, we also introduce an equivalent

graph-theoretical/graphical notation that is best suited to

define the (concrete) differential semantics, as it allows

an easier manipulation of the central notion of embedding

(see definition below), and other constructions of a more

geometric nature such as pushouts. We also present a notion

of rule refinement which we will need in the construction of

our reduced/abstract differential semantics (§VII). We note

in passing that a purely categorical presentation of the central

tenets of Kappa was developed to handle the refinement

problem [47]. In the longer term, it might be interesting

to work in the framework of general graph transformation

systems [48] and/or adhesive categories [49] - but exactly

how much of the current theory and algorithmics [50] of

Kappa can be extended to a more general setting remains to

be seen.

A. Qualitative semantics

1) Expressions: We fix a finite set of agent types A, a

finite set of sites S, and a signature map Σ from A to finite

subsets of S assigning a set of sites to each agent type.

As said in the introduction, in Kappa, sites can also hold

modifiable internal states. This is convenient in practice but

adds no difficulty to the theoretical side of affairs, so we will

leave these aside (the implementation does consider them).

With this simplification, the syntax of agents and expressions

is given below:

E ::= ε | a, E (expression)

a ::= ∅ | A(σ) (agent)

σ ::= ε | s,σ (interface)

s ::= xλ (site)

λ ::= ε | i | A@x | − (binding state)

with A ∈ A, x ∈ S, and i ∈ N a natural number.

An expression is a (possibly empty) sequence of agents.

An agent is either a proper agent or a ghost agent ∅; a

proper agent is a name in A and an interface. An interface
is a (possibly empty) sequence of sites with binding states;

one writes xλ for a site x with binding state λ. When the

binding state of x is ε, we say x is free; otherwise x is

bound. In examples, we generally omit the ε indicating a

free site. (Be careful not to confuse ε the empty expression,

or interface, and ε which denotes a free site.)

Note that the syntax distinguishes three types of bound

sites. First, we have binding labels, i ∈ N, when we know

the binding partner (which is also bearing the same i);
second, we have binding types, A@x, when we know the

partner is the site x of some agent of type A; and last,

we have wildcards ‘−’ when we only know that a site is

bound but have no further information about its partner.

One can think of wildcards as semi-edges. (In practice,

binding types and wildcards are key for obtaining more

efficient compressions, using rule simplification techniques

developed in Ref. [24]; more about this in the last section.)

A structural equivalence, which we use to tidy up an

expression and match it against another one, is defined as

the smallest equivalence relation on expressions such that:

E,A(σ,s,s′,σ′), E′ ≡ E,A(σ,s′,s,σ′), E′

E, a, a′, E′ ≡ E, a′, a, E′

E ≡ E, ∅
i, j ∈ N ∧ i does not occur in E ⇒ E[i/j] ≡ E

i ∈ N ∧ i occurs once in E ⇒ E[ε/i] ≡ E

This equivalence says that: the order of sites in interfaces

and of agents in expressions does not matter; ghost agents

367367

can be erased, binding labels can be injectively renamed and

dangling bonds (ie binding labels that occur once) removed.

We now define useful classes of expressions.

Definition IV.1. A pattern is an expression E such that:
- (i) a site x occurs at most once in any agent A(σ) in E;
- (ii) if x occurs in A(σ) then x ∈ Σ(A);
- (iii) each binding label i in E occurs exactly twice (there
are no dangling bonds).

A pattern E is said to be: proper if it has only proper

agents; disconnected if E ≡ E′, E′′ for some non-empty

proper patterns E′, E′′ (in which case E′ and E′′ share no

binding labels by condition (iii)). A pattern component is

just a connected pattern. A mixture E is a non-empty proper

pattern that is fully specified, ie each agent occurrence A in

E documents its full interface Σ(A), and sites can only be

free or bear a binding label i ∈ N. Finally, a species is a fully

specified non-empty pattern component, or, equivalently, a

connected mixture.

2) Rules: A rule is an ordered pair of patterns E	, Er,

sometimes written E	 → Er (mostly in examples), with

additional constraints (explained below). The left hand side

(lhs) E	 of a rule describes the agents taking part in it and

various conditions on their binding states for the rule to

apply. The right hand side (rhs) describes what the rule does.

Ghost agents are used for agent creation in the lhs and agent

removal in the rhs. A rule where both sides E	, Er are fully

specified proper patterns is a reaction. The key additional

flexibility offered by rules, is that one does not have to use

fully specified patterns, ie they can be left partial (see below

for an illustration).

Definition IV.2 (constraints on rules). In a rule E	, Er, the
pattern Er must be obtainable from the pattern E	 in the
following stepwise fashion (the order matters):
- some wildcards and pairs of binding labels are removed
(edge deletion);
- some ghost agents in E	 are replaced by agents with full
free interface (as specified by Σ) (agent creation);
- some agents with only free sites are replaced with ghost
agents (agent deletion);
- some free sites are bound using fresh labels in N (edge
creation).

It follows from the above constraint that both sides

E	 = a1, . . . , an, and Er = a′
1, . . . , a

′
n must have the same

number n(r) ≥ 0 of agents (which is the reason for having

have ghost agents in the syntax). Thus, there is a canonical

bijective correspondence between agent occurrences in E	

and Er. Any two proper agents in correspondence have

the same name and their interfaces must exhibit the same

sites (possibly with different binding states). Another conse-

quence of the above, is that rules are invertible except for the

agent deletion steps. In this case, unless the deleted agent

has a full free interface, we cannot recover in the inverse

rule its exact binding context at the time of deletion.

Definition IV.3. Let r be a rule with left hand side E	 =
a1, . . . , an. A site x is said to be tested by r at position i, or
(r, i)-tested, if x occurs in the interface of ai in E	. A site x
is said to be modified by r at position i, or (r, i)-modified,
if one of the following holds:
- ai = ∅, a′

i = A(σ′), x ∈ σ′ (x is created)
- ai = A(σ), a′

i = ∅, x ∈ σ (x is deleted)
- ai = A(σ), a′

i = A(σ′), x ∈ σ, x ∈ σ′, and x has a
different binding state in σ and σ′.

Note that according to the constraint above (Def. IV.2),

binding types can only be tested, not modified (although we

will use this slight extension sometimes in examples).

A system is an initial mixture and a finite set of rules R.

3) Prologue (continued): As an illustration, we can refac-

tor in Kappa the §II example by introducing one site in B for

each binding partner A, C, so that they can bind concurrently

to B. Specifically, we set A = {A, B,C}, S = {a, b, c},

Σ(A) = {b}, Σ(B) = {a, c}, and Σ(C) = {b}. The species

ABC is now written A(b1), B(a1, c2), C(b2), and the rules

emulating the earlier reactions are (rate constants are added

to the right as in the case of reactions):

∅ → B(a, c) σ
A(b), B(a) ↔ A(b1), B(a1) kA, k′

A

B(c), C(b) ↔ B(c1), C(b1) kC , k′
C

If one compares the last two rules with the corresponding

four reactions, one sees that the rules are making the rate

independence assumption explicit by, eg, not mentioning B’s

binding site c (resp. a) in the A (resp. C) to B binding rule.

4) Qualitative Semantics: We have now to explain how

to apply a rule r = E	, Er to a mixture E.

The first step is to “align” E with E	, ie, to use structural

congruence to bring the participating agents to the front of

E with their sites ordered as in E	, renaming binding labels

and introducing ghost agents as necessary (for agents created

by r). This yields an equivalent expression E′ ≡ E that

matches the rule lhs, written E′ |= E	 (definition below).

Note that, in so doing, one only uses structural equivalence

on E, not on E	.

The actual notion of matching we use is straighforward.

If E′ and E	 were plain graphs, to say that E matches E	

would mean that E	 is an induced subgraph of E (an NP-

complete problem in general, but not in our case, that of

site graphs, because of Prop. IV.4 below). The only slightly

subtle point is the matching of a binding type by a binding

label. For a binding label i in an agent A(xi) belonging to

E′ to match a binding type A(xB@y) in E	, the unique other

binding label i in E′ must be of the form B(yi) (if there

is no other binding label i, the match fails). To this effect,

we use a partial look-up function πE which given (A, x, i)
returns the binding type of i’s other occurrence in E if any.

That is to say, πE(A, x, i) = B@y if y in B is the (unique)

368368

site in E with label i distinct from site x in A.

To define matching, set E |= E	 := E |=E E	 (auxiliary

arguments are needed for the inductive definition), and then

define inductively E′ |=E E	 as follows.

xλ |=A
E xλ

xi |=A
E x

xi |=A
E xπE(A,x,i)

σ |=A
E ε

s |=A
E s	 ∧ σ |=A

E σ	 ⇒ s, σ |=A
E s	, σ	

σ |=A
E σ	 ⇒ A(σ) |=E A(σ)

∅ |=E ∅
E |=E ε

a |=E a	 ∧ E′ |=E E	 ⇒ a, E′ |=E a	, E	

Note that matching can succeed in at most one way - all the

non-determinism being handled by the ‘alignment’ phase.

(Recall that mixtures do not use binding types or wildcards,

so we do not need to consider such cases in the inductive

definition above.)

The second step, once a match is realized, is to replace in

E′ the lhs E	 by the rhs Er. We write E′[Er] for the result

of this substitution. This may produce dangling bonds (if r
unbinds a wildcard bond or deletes an agent on one side of

a bond, there is a “side-effect” as the other side of the bond

needs to be erased as well) and/or ghost agents (if r deletes

agents), which one can clean up using ≡ afterwards.

Substitution is defined inductively as below.

λr = i, ε ⇒ xλ[xλr] = xλr

λr = A@x,− ⇒ xλ[xλr] = xλ

σ[ε] = σ
(s, σ)[sr, σr] = s[sr], σ[σr]
A(σ)[A(σr)] = A(σ[σr])

∅[ar] = ar

a[∅] = ∅
E[ε] = E

(a, E)[ar, Er] = a[ar], E[Er]

Finally, we can define the transition system generated by a

set of rules R. Suppose E0, E1 are mixtures, r = E	 → Er

is a rule in R, E0 ≡ E′
0, E′

0 |=E	, and E′
0[Er] ≡ E1, then

we write E0 →r E1, and say that E0 can be rewritten into

E1. Transitions are labelled by the rule they use.

5) An example: Here is a simple example:

r := B(cC@b) → B(c)
E := A(b1), B(a1, c2), C(b2)

In order to apply the rule r to the expression E, we rewrite

E to the equivalent form E′ = B(c2, a1), A(b1), C(b2); then

we check E′ |= B(cC@b) which is true since πE′(B, c, 2) =

A C

B

b b

ca

(a) A(b1), B(a1, c2), C(b2)

B B

A

→c
C@b

c

(b) B(cC@b) → B(c)

Figure 3. Graphical notation for a species (left) and for a rule (right).

C@b; so we can proceed to the second step:

E′[B(c)] = B(c2, a1)[B(c)], A(b1), C(b2)
= B(c2[c], a1), A(b1), C(b2)
= B(c, a1), A(b1), C(b2)
≡ B(c, a1), A(b1), C(b)

This particular rule has the side-effect of half-erasing an

edge, and hence creates a dangling bond, which we can get

rid of using ≡ to recover a mixture.

B. Site graphs

As said, patterns (and mixtures) can be presented as

site graphs, that is to say undirected graphs where typed

nodes have sites, and edges form a partial matching on sites

(meaning a site can be used in one edge only). Fig. 3 shows

an example of the site graph corresponding to the ABC
species from §II, as well as the graphical version of the rule

we have examined in the example above. With this change

of representation, a pattern component is simply a connected

site graph, a mixture is a site graph where every node shows

a full interface (according to the global signature Σ) and no

binding type or wildcard occurs, and a species is a connected

mixture.
1) Embeddings: Our notion of matching can be reformu-

lated as a notion of site graph embedding. Suppose Z, Z ′,
Z	 are proper patterns such that Z ≡ Z ′ |= Z	. Decompose

Z, Z ′, Z	 as sequences of (proper) agents:

Z = A1, . . . , Am,
Z ′ = A′

1, . . . , A
′
m

Z	 = B1, . . . , Bn

where necessarily 0 < n ≤ m. In the absence of ghost

agents the derivation of Z ≡ Z ′ preserves the number

of agents, and hence, it defines a unique permutation π
mapping A′

i to Aπ(i) for 0 < i ≤ m. The restriction φ
of π to 0 < i ≤ n is called an embedding of Z	 into Z.

There may be several embeddings between Z	 and Z - we

write [Z	, Z] for the set of such embeddings.

With the notations just above, ι ∈ [Z	, Z
′] with ι the

canonical injection of {1, . . . , n} into {1, . . . , m}, π ∈
[Z ′, Z], and πι ∈ [Z	, Z]. Thus, matches are special em-

beddings, corresponding to canonical injections, and the

alignement procedure to produce a match can be seen as the

factorization of an embedding φ as φ = πι. Working directly

with embeddings results in more perspicuous arguments as

we will see.

One can extend the notion of embedding to patterns with

ghost agents by defining φ ∈ [Z1, Z2] if φ ∈ [Ẑ1, Ẑ2],

369369

where Ẑ ≡ Z is Z where all ghost agents have been

removed. Patterns and embeddings then form a category

(analogous to the category of plain graphs, where morphisms

are embeddings as induced subgraphs). One says that φ is an

isomorphism (iso) between Z1 and Z2 if φ has an inverse. It

is easy to see that every φ in [Z, Z] is an iso, usually called

an automorphism (aka a symmetry) of Z. We write |[Z, Z]|
for the number of such automorphisms.

The graphical representation carries over nicely to rules.

One can now apply a rule r = E	, Er directly to a Z given

φ ∈ [E	, Z]. The result of applying r to Z according to

φ is always defined and yields a unique result, say Z ′, as

well as a unique embedding φ′ from Er into Z ′. Of course,

there are, in general, many embeddings and the result will

depend, again in general, on the particular choice made (in

sharp contrast with reactions!).

For example, the pattern B(cC@b) embeds twice in the

mixture A(b1), B(a1, c2), C(b2), B(a, c3), C(b3). So we can

apply the rule B(cC@b) → ∅ to get either of:

A(b1), B(a1, c2), C(b2), C(b)
A(b), C(b), B(a, c3), C(b3)

2) Epimorphisms: We recall an easy result which is a

consequence of the strong requirements on an embedding,

and the fact that all sites of an agent are distinguishable (ie

form a set, not a multiset).

Lemma IV.4 (rigidity [50]). An embedding of a pattern
component C into a pattern Z is fully defined by the image
of one agent. That is to say, whenever there are i, φ, and
φ′ such that φ ∈ [C, Z], φ′ ∈ [C, Z] and φ(i) = φ′(i), then
φ = φ′.

In general, an epimorphism (epi) is a ψ ∈ [Z, X], such

that for all φ ∈ [X, Z ′], φ′ ∈ [X, Z ′], φψ = φ′ψ implies

φ = φ′. We can describe epis neatly.

Lemma IV.5. Non-empty embeddings into a pattern com-
ponent are epis. That is to say, if C is a pattern component,
ψ ∈ [Z, C] is an epi iff Ẑ is not empty.

It follows that epis enjoy a much weaker property than

being surjective on nodes:

Corollary IV.6. φ ∈ [Z1, Z2] is an epi iff the image of Z1

intersects each component of Z2.

One says that φ1 ∈ [X, Z1], φ2 ∈ [X, Z2] are isomorphic,

if φ1 = φφ2, with φ an isomorphism in [Z1, Z2]. If both φis

are epis, then φ is unique.

One says that φ ∈ [Z1, Z2] is a straight epi if Ẑ1, and Ẑ2

can be decomposed in two sequences of pattern components

of equal length (possibly zero):

Ẑ1 = C1, . . . , Cn

Ẑ2 = D1, . . . , Dn

and φ can be written as a (possibly empty) disjoint sum of

X ′

ψ′
2ψ′

1

Z2Z1

!ψ

γ2γ1

Y

X

ψ2ψ1

(a) Pullback.

Z2Z1

!ψ

Y ′

ψ2ψ1

X

Yγ′
1

γ1

γ′
2

γ2

(b) Idem pushout.

Figure 4. Overlap: a commutative square of embeddings which is both a
pullback and an idem pushout.

φi ∈ [Ci, Di].
Clearly, straight epis are epis. Any epi in [Z1, Z2] must

preserve the number of components, and is therefore canon-

ically isomorphic to a straight one (just permute the com-

ponents Di). That isomorphism is unique because of the

remark above.

3) Overlaps: We would like now to define the notion

of overlap between patterns which will be central to our

soudness argument. Since patterns might overlap in more

than one way, to define an overlap unambiguously one has

to provide additional data that one can think of as explicit

glueing instructions.

Definition IV.7 (overlap). An overlap between patterns Z1

and Z2 is a commuting square X, ψ1, ψ2, γ1, γ2, Y with
ψi ∈ [X, Zi], γi ∈ [Zi, Y], which is both a pullback and
an idem pushout (See Fig. 4).

The triple X, ψ1, ψ2 is called a span and indicates a

region common to Z1 and Z2, whereas the triple γ1, γ2, Y
is called a co-span and indicates a way to glue Z1 and Z2.

The commuting square condition namely γ1ψ1 = γ2ψ2 (see

Fig. 4) expresses the fact that the common region defined by

the span is identified by the glueing defined by the co-span.

Given a co-span γ1, γ2, Y , there is always a span

X, ψ1, ψ2 which makes the diagram commute. In fact there

is always a universal such, called the pullback of γ1, γ2, Y .

(It is universal in the sense that for any other solution

X ′, ψ′
1, ψ

′
2 there is a unique embedding ψ ∈ [X ′, X] such

that ψ′
1 = ψ1ψ, ψ′

2 = ψ2ψ. This implies that the pullback

is unique up to unique isomorphism.)

Conversely, given a span X, ψ1, ψ2 there might be no

co-span that ‘closes the span’ (ie, forms a commutative

square), since away from the common region so defined,

the patterns Z1 and Z2 might make incompatible choices.

However, given any such a closing co-span, say γ′
1, γ

′
2, Y

′,
there is a universal compatible closing co-span say γ1, γ2, Y .

In the particular case of a cospan which closes the span and

is its own minimal compatible closing cospan (meaning that

γ′
1, γ

′
2, Y

′ is isomorphic to γ1, γ2, Y), one says the obtained

370370

square is an idem pushout [51].

We say the overlap is non trivial if X is not empty. We

only consider non trivial overlaps in the rest of the paper,

and for counting purposes, we fix a representative in each

isomorphism class.

4) Overlaps (examples): We consider first an example of

two patterns Z1 and Z2 that can be glued in two (non-trivial)

ways:

Z1 = R(r1, s), R(r1),
Z2 = R(a)

Depending on which agents R one chooses to identify

we obtain two glueings. The first glueing is obtained us-

ing span R(), φ1, φ2 and co-span φ3, φ4, R(r1, s, a), R(r1)
where φ1, φ2, φ3, φ4 are identical maps. The other

glueing is obtained using span R(), φ′
1, φ

′
2 and co-span

φ′
3, φ

′
4, R(r1, s), R(r1, a), where φ′

1 and φ′
4 map 1 to 2, and

φ′
2 and φ′

3 are identical maps. In both cases the obtained

square is an overlap. This tells us, concretely, that we

definitely need glueing instructions (ie a span) to know what

to do.

Here is another, more subtle, example of two idem

pushouts (and overlaps) on the same initial span (maps are

uniquely definable so we omit them):

Z1 = A(x1), B(x1) ← A() → A(y1), B(y1) = Z2

Z1 → A(x1, y2), B(y2), B(x1) ← Z2

Z1 → A(x1, y2), B(y2, x1) ← Z2

Concretely, this means that there are essentially different

ways to execute glueing instructions specified by a span -

so in effect, we need not just a span but a complete square.

In the sequel, such constructions will always be made in a

context where a commuting square is given (as in Fig. 6, 7),

so it will not be a problem.

V. CONCRETE DIFFERENTIAL SEMANTICS

We turn now to the definition of the concrete differential

semantics of a rule set - which eventually will serve as

our reference semantics for the soundness of our reduction

method. That is to say, we need to define a differential

system F as in Def. III.1. As we have seen in the prologue,

this is a simple operation if one starts from a set of reactions.

In the case of rules, one needs a first step to map the rule

set at hand into a set of reactions. To do this effectively,

we introduce a key technical notion, that of rule refinement

(studied at length in Ref. [52]).

A. Rule refinements

Fix a rule r = E	, Er. Suppose Z is a pattern such that

Z |= E	, we define the left refinement of r by Z, written

Z{r}, as the rule Z, Z[Er]. Similarly, suppose Z is such that

Z |= Er, we define the right refinement of r by Z, written

{r}Z, as the rule [E	; Er]Z, Z using inverse substitution as

defined inductively below.

[ε; ε]E = E
[a	, E	; ar, Er](a, E) = [a	; ar]a, [E	; Er]E

[a	; ∅]∅ = a	

[∅; ar]a = ∅
[A(σ); A(σr)]A(σ) = A([σ	; σr]σ)
[ε; ε]σ = σ
[s	, σ	; sr, σr]s, σ = [s	; sr]s, [σ	; σr]σ

[xλ� ; xλr]xλ = xλ� if λ	 = ε, i ∈ N

[xA@x; xA@x]xλ = xλ

[x ; x]xλ = xλ

[x ; xλr]xλ = x if λr �= −
It is easy to see that [E	; Er]Er = E	 as it should. Note

that inverse substitution depends not only on E	, but also on

Er. In fact, we need Er only in the last two equations below

to test whether the wildcard x is deleted by r or not. This is

different from substitution (defined earlier in §IV-A4) which

only depends on Er.

It is perhaps useful to give an example of left/right

refinement where this is used:

r = A(x), ∅ → A(x1), B(x1)
Zr = A(x1, y), B(x1)
Z	 = A(x , y)
{r}Zr = A(x , y), ∅ → A(x1, y), B(x1) = Z	{r}

Refinements extend in a straightforward way (by factoring

embeddings via matchings) to the more general case where

we have an embedding of Z (instead of just a matching)

into the lhs or the rhs of the rule of interest.

We write:

- (Z, φ){r} for the left refinement of r along φ ∈ [E	, Z]
- {r}(Z, ψ) for the right refinement of r along ψ ∈ [Er, Z]

If either φ or ψ is a canonical injection ι, we get the

earlier notion, ie (Z, ι){r} = Z{r}, and {r}(Z, ι) = {r}Z.

We say two refinements (left or right) are isomorphic if their

defining embeddings are.

Definition V.1. Let r be a rule, and φ be a straight epi in
[E	, M] where M is a mixture. The pair φ, rφ where rφ is
the left refinement

rφ := (M,φ){r}
is called the ground refinement of r along φ.

In the above definition, it is important to keep track of

the embedding that generates the refinement rφ, since there

can be many φ that produce the same rφ. Note also that

the requirement that φ is a straight epi implies that E	 and

M have the same number of components (whereas an epi

could, in general, see the number of components decrease).

If E	 consists only of empty agents, then there is only

one refinement, the empty map (which is a straight epi!),

and Er is necessarily a sequence of species (by Def. IV.2).

371371

Proposition V.2. Consider {r}(Z, γ) =: E′
	, Z the right

refinement of a rule r = E	, Er along γ ∈ [Er, Z]. Suppose
that γ is an epi, then the induced γ′ ∈ [E	, E

′
] is also

an epi, and if γ′ preserves the number of components,
every ground refinement of {r}(Z, γ) determines injectively
a ground refinement of r.

Proof: In order to extend Er with an epi γ, one must

extend the interface of agents in Er (Cor. IV.6). Such

‘extended’ agents cannot be created by r, since created

agents get a maximal interface (Def. IV.2). It follows that

every interface extension will transfer by inverse subsitution

to the left hand side, hence γ′ is an epi. If, in addition, E′
	

has the same number of components as E	, then any straight

epi in [E′
	, M], ie any ground refinement of {r}(Z, γ), gives

rise to an embedding ψγ′ ∈ [E	, M] which also preserves

the number of components, and is therefore canonically

isomorphic to a ground refinement of r. Because γ′ is an

epi, this correspondence is 1-1.

We are not saying that γ′ must always preserve the

number of components. Here is an example:

A(x), A(x) → A(x1), A(x1)
γ : A(x1), A(x1) → A(x1, y2), A(x1, y2)
γ′ : A(x), A(x) → A(x, y2), A(x, y2)

B. Concrete differential semantics

1) The concrete domain: To obtain the concrete differen-

tial semantics of a rule set R we need to choose a finite set

of species V closed under the rules in R, which contains all

species present in the system’s initial state, and has at most

one representative per species isomorphism class. (By closed

under r, we mean that any application of r to a sequence of

species in V produces a sequence of species in V .)

How do we choose V in practice? We cannot always take

all species as defined by the signature Σ, as there might

be countably many. A better choice is to use the efficient

symbolic description of a V closed under R and containing

any given set of initial species obtained in Ref. [23], [24].

Having said that, in this theoretical development, we just

assume we have a proper V . (The finiteness assumption is

a limitation discussed again in the conclusion.)

Following §III, a state ρ will be a map from V to R
+,

mapping each S ∈ V to its concentration ρ(S) ≥ 0.

2) The concrete differential system: Suppose now each

rule r in R is equipped with a rate constant k(r) (a positive

real number).

We construct the differential system F in a piecewise

fashion, by defining for each rule r in R, each ground

refinement φ of that r (up to iso, and with all components

in V), and each species S in V , the positive and negative

contributions of the pair r, φ to F(ρ)(S) in a state ρ.

Pick a rule r = E	, Er in R, and a straight epi φ from

E	 into some mixture M = R1, . . . , Rn over V . Decompose

the ground refinement φ, rφ into components:

rφ := R1, . . . , Rn → P1, . . . , Pm

where the ‘products’ Pj are the species in V produced by

the application of φ, rφ to R1, . . . , Rn. The Pjs are in V
because the ‘reactants’ Ri are also in V , and V is closed

under rules, by assumption.

Define (following §III) the activity of rφ (aka flux, rate,

velocity, etc.) in a state ρ as

γ(r)
∏

i ρ(Ri)

with γ(r) = k(r)/|[E	, E]|. Recall |[E	, E]| stands for the

number of automorphisms of E	. This predivision of the rate

constant of the rule by its number of automorphisms is the

usual convention (see the discussion below).

The activity of each rφ contributes to the consumption

and production of species in V as follows:

F(ρ)(Ri)
+= −γ(r)ρ(R1) · · · ρ(Rn) for 1 ≤ i ≤ n

F(ρ)(Pj)
+= γ(r)ρ(R1) · · · ρ(Rn) for 1 ≤ j ≤ m

Note that monomials can accumulate for different values of

j or k. Eg for the ground rule:

rφ = R,R → P

we find that F(ρ)(R) += −2γ(r)ρ(R)2, that is to say the rule

contributes twice to the consumption of R.

Since V and R are finite, so is the number of ground

refinements of rules in R (up to iso), and hence the total

number of contributions is finite as well. So F(ρ)(S) is a

well-defined finite sum of monomials of the above form for

each S ∈ V .

This F constitutes the concrete differential system or

semantics of R, and will be the reference for proving the

soundness of reductions.

3) Discussion : It might be useful to point at the relation-

ship of the above definition with the usual notion of activity

from chemical kinetics. Suppose r is already a reaction, that

is to say r’s lhs can be written S1, . . . , Sn with Si ∈ V .

Then r has
∏

i |[Si, Si]| ground refinements, which are all

identical.

By our definition above the joint activity of r’s ground

refinements is:

∏
i |[Si, Si]| · k(r)/|[E	, E]| · ρ(S1) · · · ρ(Sn)

Now if the Sis are considered as pure names as in chemical

kinetics (aka Petri nets, multiset rewriting), the activity of

the corresponding reaction is:

k(r)/τ · ρ(S1) · · · ρ(Sn)

where τ is the number of multiset automorphisms of

S1, . . . , Sn. Clearly τ = |[E	, E]|/
∏

i |[Si, Si]|, since the

internal structure is hidden, which is to say that the joint

372372

activity of the ground refi nements of is the same as its

usual activity as a fl at reaction.

A point worth noticing is that the differential semantics we

have just defi ned ignores rule applications where two pattern

components of embed into two distinct areas of the

same
to preserve the number of connected components. In the

stochastic semantics, one can allows for such rule instances.

It does not matter in the sense that the differential semantics

is the expected behaviour of the stochastic one when both the

initial mixture size and the volume diverge with a constant

lower arities, corresponding to epis which do not preserve

the number of components, are negligible anyway.

VI. FRAGMENTS: THE ABSTRACT DOMAIN

We now turn to the construction of the abstract/reduced

semantics. The first step is to defi ne a family of suitable

pattern components called fragments, that will be the basis of

our abstract domain and enable the defi nition of a (backward

complete) counterpart to (next section). To defi ne our

fragments, we will use an annotated contact map (defi ned

observed by the rules.

Throughout this section and the next we suppose fi xed a

rule set , an initial state, and a fi nite superset of reachable

species

discussed in

The contact map associated to is a summary of the

bindings found in the species of . Specifi cally, the nodes of

the contact map are the agent types occurring in with their

full set of sites according to the signature , with an edge

between two sites iff these two sites form a bond in some
species in . Therefore, any species in

to the contact map.

To lighten the notations we will suppose that maps

words, that a site can only belong to one type of agent.

An example of a contact map is given in Fig. 5(a). As

one can see, sites in the contact map may be connected

to several sites, which implies a competition between two

binding states; indeed, an agent can even be connected to

itself (via the same, or different, sites). (This means that the

think of it as a type for a set of site graphs.)

A parsimonious covering of a set is a set of subsets

of such that and, for no ,

(strict inclusion); the elements of are referred to as classes
of . Hence a covering is not necessarily a partition, and

we will use this fl exibility. One can defi ne a partial order

on coverings by setting if for any , there

exists such that .

Defi nition VI.1. An annotated contact map (aCM) is a

SHC

SOS

GRB2

EGF

EGFR
Y48

Y68

l

r

r

a

b

d

Y7

c

(a) Contact map.
SHC

SOS

GRB2

EGF

EGFR
Y48

Y68

l

r

r

a

b

d

Y7

p

(b) Annotated contact map.

Figure 5. Maps for the early EGF model.

contact map where in addition:
has a parsimonious covering of ;

Distinguished edges are called soft (represented with

dashed lines in Fig. 5(b)), the others are called solid. The

idea is that a class in the covering of an agent denotes a

relationship between sites that has to be tracked in order

to defi ne the abstract dynamics of the system. Solid edges

indicate bonds that also need tracking.

A. Dependency analysis

A rule is trivial if it deletes a bond without testing or

modifi ying anything else, ie it has one of the following

forms:

Let be a rule with left hand side . A site is said to

be a docking site for at position , or an

if occurs at position , and there is a path from leading

to a modifi ed agent. To be precise, this means that there is

, , belonging to

such that: ; , are distinct sites of the same

agent in for ; and belongs to an agent which

has a site modifi ed by (possibly itself).

Defi nition VI.2. An aCM is valid with respect to a rule set
if satisfi es the following constraints.
For every rule in , and every :

is an
and is
also contains ;

class.
in , any edge in the aCM

which (2.i) either occurs in the lhs of

of the edge need not actually occur in .)
Finally, (2.iii) if a cycle in a species in has only one

soft edge, then no (trivial) rule in can delete it.

Note that trivial rules do not constrain the aCM, as they

automatically verify , . Clause (2.iii) ensures that

373373

trivial rules don’t generate ambiguous production terms on

fragments (see Prop. VI.8).

The idea behind the above definition is that when no

correlations are observable between (not necessarily disjoint)

subparts of a species, one can safely fragment this species

into its subparts (which is why we call them fragments!).

Each valid annotated contact map tells us how to obtain

fragments. Soft edges specify where we can cut species

(using binding types), and coverings specify which sites

must be kept together in interfaces.

Definition VI.3. Given an aCM, a fragment for that aCM
is a proper pattern component F such that:
- F has no wildcard,
- F embeds in some S of V ,
- (i) each agent interface in F projects to a covering class;
- (ii) each binding label in F projects to a solid edge;
- (iii) each binding type in F projects to a soft edge.

Note that clause (i) makes no obligation to choose the

same class for different occurrences of the same agent type

in F . This is key for the flexibility of fragments.

There are two particular valid aCMs (which may coin-

cide). The trivial aCM arises by taking for all agent types

A the trivial covering {Σ(A)}, and taking all edges to be

solid. Its set of fragments is the set of all species in V . The

minimal aCM is obtained by choosing edges soft whenever

possible, and a �-minimal covering for every agent type. (It

is easy to see that there is such a minimal aCM.)

We suppose hereafter that we have fixed a valid aCM

and we write V� for the finite set of fragments it generates

according to the definition above. By definition, every frag-

ment can be embedded in some species in V , so this set is

finite. Typically it is much smaller than V .

B. Discussion

We see that the fewer non-trivial rules one has in R,

and the smaller their components, the fewer fragments are

generated by the minimal aCM. Since the efficiency of

the reduction is eventually measured by the number of

fragments that are generated (the smaller the better) one

would like to minimise that number as much as possible. The

separate treatment of trivial rules obviously helps as it allows

more soft edges. Another complementary way to improve

reduction is to remove redundant tests in a rule (because

of clauses (1.i), (1.ii) above). This is one application of the

qualitative static analysis proposed in Ref. [24], and we do

use it in real examples. (More about efficiency matters in the

application section.) In passing, these are the reasons that

have prompted us to introduce binding types in the syntax

of Kappa.

Another point worth of notice is that intermediate gran-

ularities can be useful. One can refine the aCM if there is

need to express the concentration of a pattern component

C of interest. This amounts to considering a fictitious rule

C → C, which may incur larger covering classes and fewer

soft edges, and consequently less of a reduction.

C. Example

An example aCM obtained from a simple model of the

early events in the EGF pathway [55] is given in Fig. 5.

Let us examine one of the rules, a non-trivial dissociation:

EGFR(Y481), SHC(p1, Y72), GRB2(a2, b) →
EGFR(Y48), SHC(p, Y72), GRB2(a2, b)

Since it is non-trivial, and it contains modified sites, the

rule does generate constraints: by (2.i) both the (Y48, p)
and (a, Y7) edges must be solid, by (1.i) any class that

contains p (modified at position 2) must also contain Y7
(tested at position 2); again by (1.i) any class that contains

a (a docking site at position 3) must also contain b (tested at

position 3). (To see that a is indeed a docking site, we follow

its edge to position 2 and we find p modified at position 2.)

If one looks at the other rules of the model (not shown

here), one sees that the sites Y48 and Y68 are independent,

but can both only be activated if the site r is bound, a binding

which only happens if the site l is bound. This determines

two covering classes {l, r, Y48} and {l, r, Y68} for EGFR.

The edge from r to itself can be kept soft because, in the

same model, the state of one receptor in a dimer does not

affect the behaviour of the other. This is how the aCM

example is derived.

D. Abstraction function

Having now defined our set of abstract variables V�, the

next step is to define the abstraction function ψ from V → R

into V� → R. We first need a couple of auxiliary definitions

related to the counting of pattern components.

Given a concrete state ρ ∈ V → R
+, we define the

(real positive) number of embeddings ρ(C) of a pattern

component C in to ρ as:

ρ(C) =
∑

S∈V ρ(S) · |[C, S]|
It is also convenient to define a version of ρ̄ which counts

instances or concentrations, that is to say embeddings up to

automorphisms:

ρ̃(C) :=
ρ(C)
|[C, C]|

Clearly, [S, S′] is empty unless, S = S′ (recall that we have

picked one representative per iso class in V), so ρ(S) =
ρ(S) · |[S, S]|, and ρ̃(S) = ρ(S), hence ρ̃(S) is an extension

of ρ.

By convention we set ρ(∅) := 1 = ρ̃(∅).
Finally, for any fragment F , we define:

ψ(ρ)(F) = ρ̃(F)

Clearly the function ψ is a linear mapping with positive

coefficients.

374374

We can check that it is expansive (as required in §III).

Suppose one has an unbounded subset U of V → R
+, then

there must be an S ∈ V such that supρ∈U ρ(S) = +∞. Pick

such an S, and a fragment FS that embeds into S (clearly

there is always one). One has:

ψ(ρ)(FS) =
∑

S′∈V ρ(S′) · |[FS , S′]|/|[FS , FS]|
≥ ρ(S) · |[FS , S]|/|[FS , FS]|

so supρ∈ψ(U) ψ(ρ)(S) = +∞ as well.

E. Fragment properties

We identify in the following the key properties of our set

of fragments. These will be sufficient for the derivation and

the proof of correctness of the abstract counterpart F
� to F

in the next section. Some of the proofs are only sketched.

We define a subfragment as a pattern component that can

be embedded in a fragment.

Proposition VI.4 (growth). Let C be a subfragment, its con-
centration ρ̃(C) can be expressed as a linear combination
of concentrations of fragments.

Proof: The idea is to compute ρ(C) recursively. At each

step one picks a place where to grow C, and one does it in

all possible ways compatible with V . If C does not embed

into a species in V , we set ρ(C) = 0. Else:

- either we pick a solid binding type B@b in C which we

replace in all the following ways: 1) with an edge to any

dual binding type in C, 2) with an edge to a new agent of

type B;

- or we add a site x to an agent in C the interface of which

is included in a covering class which contains x, both free

and bearing a wildcard;

- or we pick a wildcard which we substitute with all the

binding types compatible with the CM. The recursion stops

when all terms in the sum are fragments.

The growth procedure is not unique, as we can see in the

example below. As an example, consider the first step of the

recursion for the derivation of the number of embeddings of

the pattern component C = R(l−, r−). Since the set {l, r}
is a subset of two classes {l, r, Y48}, and {l, r, Y68} one can

grow C in two ways. If one grows C along Y 48, one can

express ρ(R(l−, r−)) as the sum:

ρ(R(l−, r−, Y48)) + ρ(R(l−, r−, Y48SHC@p))

Then the binding type SHC@p needs to be expanded,

because the edge is solid in the aCM, and so on. The non-

uniqueness of the decomposition comes partly from the fact

that coverings are not partitions.

Proposition VI.5 (subfragment). Any pattern component
that occurs in the lhs of a non-trivial rule is a subfragment.

Proof: Let C be a pattern component occurring in the

lhs of a non-trivial rule. By (1.ii), each A(σ) in C has its

sites contained in a class in C(A); and by (2.i), any bond in

C is solid; so by Def. VI.3, C embeds in a fragment.

The combination of Prop. VI.4 and VI.5 ensures that the

concentrations of the lhs components of all rules in R, and

hence all the rule activities, can be expressed as various

functions of the concentrations of fragments.

Proposition VI.6 (left intersection). Let F be a fragment,
r = E	, Er be a non-trivial rule, and C be a pattern
component of E	. F cannot overlap C on a site that is
modified by r.

More precisely: 1) if X, ψ1, ψ2, γ1, γ2, Y is an overlap
between C and F , and the image of X along ψ1 is modified
by r, then ψ1 is an iso; and 2) if F contains a (bound) site
x that can be freed by a side-effect of r (either a wildcard
or agent deletion), then F also contains the site x is bound
to.

Proof: 2) is a direct consequence of (2.ii). Let us prove

1). By assumption, F contains an agent A with a site that is

modified. By (1.i), this agent A contains in F all the sites

that are tested by the rule, and which therefore also occur

in C. Since the overlap is a pull-back, all these sites also

feature in X , and since the square of the overlap commutes,

these sites must have compatible states in F and C. By (2.i),
all edges in C are solid, so F must contain all the bonds

emanating from A that are present in C. If we follow one, it

leads us to a new agent B via a docking site x from where

we can repeat our reasoning with B, using again (1.i). Hence

F contains a copy of C, so X is isomorphic to C.

The combination of Prop. VI.4 and VI.6 ensures that

one can express the concentration of fragments that are

consumed by a rule as a function of the concentration of

other fragments. For instance, this prevents situations such

as the rule A(x−, y) → ∅ with F = A(xB@b, z), which

is a good thing, since in such a case, one cannot express

the rate at which r consumes F without knowing the exact

correlation between the binding states of y, and z.

Proposition VI.7 (right intersection). Let F be a fragment,
r = E	, Er be a non-trivial rule, and X,ψ1, ψ2, γ1, γ2, Y
an overlap between F and Er, where X is modified by r.

Consider the right refinement r′ = {r}(Y, γ2) = Y ′, Y

X ′

ψ′
1

��

ψ′
2 �� E	

��

γ′
2

��

Er

γ2

��

X

ψ1

��

ψ2��

F ′
γ′
1

�� Y ′ Y Fγ1
��

If E	 and Y ′ have the same number of components, then
any component in Y ′ is a subfragment.

Proof: Suppose F ′, the (possibly not connected) an-

tecedent of F in Y ′, intersects some component C in E	,

then it must intersect C on a modified site. To see why,

call C ′ a component of F ′ which intersects C. If F ′ is

375375

disconnected, then C ′ must be modified by the rule, else F
would not be connected (which it is, being a fragment); if F ′

is connected, then C ′ = F ′, and again must be modified, else

F = F ′ and X is not modified by the rule (contrary to what

we assume). In both cases, C ′ is modified, which means it

must intersect E	 on a modified site. That site must belong

to C, else C ′ is connecting C with another component of

E	 in Y ′, which contradicts γ′
2 preserving the number of

components.

Edges in Y ′ either come from E	 or from F , so by (2.i)
and by definition of fragments, they are solid (recall we have

assumed that r is non-trivial). Agents in Y ′ come either from

E	, or F , or both (if they are merged in Y). So their sites

form subsets of classes of the aCM: by (1.ii) in the first case;

by definition of a fragment in the second case; and by (1.i)
in the third case, since the agent in F contains a docking

or a modified site (by the opening observation). It follows

from the definition of fragments, that any component of Y ′

can be embedded in a fragment.

Props. VI.4 and VI.7 ensure that we can express the

concentrations of the fragments that are produced in terms

of the concentrations of the other fragments.

Proposition VI.8 (cycles). If a fragment F contains two dis-
tinct and compatible binding types A(aB@b), and B(bA@a),
then no rule can delete an a, b bond.

Prop. VI.8 is a reformulation of (2.iii) which avoids a

situation where by applying a rule deleting an a, b bond

to an F , one will free a and b in F simultaneously if

a, b are bound together in some concrete state. In this

case, to compute the concentration of fragments produced,

one would need to know the proportion of F where a, b
are bound to themselves, an information which one cannot

derive from the abstract state.

VII. ABSTRACT DIFFERENTIAL SEMANTICS

Using Prop. VI.4-VI.8 we can now get to our main and

final construction, that of our abstract/reduced semantics F
�.

Following §III, we want to express, for any fragment F ,

ψ(F(ρ))(F) as a function F
� of the ψ(ρ)(Fi) where Fi are

also fragments. The existence of such a function is what we

have called the self-consistency of ψ in §II.

From §VI-D, ψ(ρ)(Fi) = ρ̃(Fi), and by the “growth”

Prop. VI.5, we see that to construct F
�, it is enough to

express ψ(F(ρ))(F) as a function of the concentration ρ̃(C)
of subfragments C.

Consider a rule r = E	, Er, with Ê	 = C1, . . . , Cn, and

Ci are components. In §V we have computed the contribu-

tions of r to F, by enumerating its ground refinements. Let

us review quickly this construction.

1) Reformulation of the goal: We consider the set r̂ of

all triples:

(Ri, φRi
: 1 ≤ i ≤ n), (Pj : 1 ≤ j ≤ m), φP

with φi in [Ci, Ri], each Ri a species in V , P1, . . . , Pm the

sequence of species produced by the application of r along∑
i φRi , and φP the corresponding embedding between Er

and P1, . . . , Pm.

The negative and positive contributions of r to the concen-

tration of S ∈ V are then obtained as the respective sums:

δ−(r)(S) =
γ(r) · ∑(Ri,φRi

),(Pj),φP∈r̂

∑
{k|S=Rk}

∏
i ρ(Ri)

δ+(r)(S) =
γ(r) · ∑(Ri,φRi

),(Pj),φP∈r̂

∑
{k|S=Pk}

∏
i ρ(Ri)

Similarly, we consider the ways in which a fragment F ∈
V� can be embedded in a species occurring (on either side) of

a ground refinement of r. Thus, we introduce the following

set of 5-tuples Neg(r, F) (resp. Pos(r, F)):

(Ri, φRi : 1 ≤ i ≤ n), (Pj : 1 ≤ j ≤ m), φP ∈ r̂,
1 ≤ k ≤ n (resp. 1 ≤ k ≤ m),
φ ∈ [F,Rk] (resp. φ ∈ [F, Pk])

From the definition of ψ, it follows that the negative and

positive contributions of r to the concentration of F are

given as the respective sums:

ψ(δ−(r))(F) =
γ(r)

|[F, F]| ·
∑

(Ri,φRi
),(Pj),φP∈r̂

∑
k,φ∈[F,Rk]

∏
i ρ(Ri)

ψ(δ+(r))(F) =
γ(r)

|[F, F]| ·
∑

(Ri,φRi
),(Pj),φP∈r̂

∑
k,φ∈[F,Pk]

∏
i ρ(Ri)

So we can rephrase our goal as that of expressing, for each

F , and each r, the difference ψ(δ+(r))(F)− ψ(δ−(r))(F)
in terms of (sub-) fragments.

2) Mute contributions: Pick t = (Ri, φRi
), (Pj), φP , k, φ

in Neg(r, F). We have a co-span φk, φ, Rk (see Fig. 6). If

the image of F by φ is not modified by r, we say that t is

mute.

Pick t = (Ri, φRi
), (Pj), φP , k, φ in Pos(r, F). We have

a co-span φPk
φ, φP , P1, . . . , Pm (See Fig. 7), with φPk

the

canonical inclusion of Pk into P1, . . . , Pm. If the image of

F by φPk
φ is not modified by r, we say that t is mute.

Negative and positive mute ts are in bijection, thus their

contributions cancel pairwise. So, we can restrict the sums

ψ(δ−(r))(F) and ψ(δ+(r))(F) to proper, ie non-mute,

tuples in Pos(r, F) and consumption ones in Neg(r, F). We

write Neg′(r, F) and Pos′(r, F) for the remaining proper

contributions.

It remains to express each of these terms as functions of

subfragment concentrations. Firstly, we deal with soft edges

and the two forms of trivial rules, and then with non-trivial

rules.

376376

F
φ′

Rk

φRk
φ

Ck

Figure 6. Consumption and trivial rules.

ErF

φP

φPk

P1, . . . , Pm

φ
YPk

γ1 γ2

X

ψ1 ψ2

Figure 7. Production.

3) Trivial rules: Consider the first form of trivial disso-

ciation (possibly (A, a) = (B, b)):

r = A(a1), B(b1) → A(a), B(b)

and suppose the edge between a and b is soft.

Pick a term t = (R1, φR1), (Pj)j , φP , 1, φ in Neg′(r, F).
Because t is not mute, and by Prop. VI.8, F cannot overlap

with both A and B, and there is a unique embedding φ′ be-

tween either A(aB@b) or B(bA@a) and F , with φφ′ = φR1 .

Conversely, if φ′ is such an embedding, then φφ′ is in

[C1, R1]. Thus, one has a bijection between [C1, R1] and

[A(aB@b), F] ∪ [B(bA@a), F]. Hence, the proper consump-

tion of F is the sum of the following (constant) terms:

γ(r)
|[F, F]| ·

∑
φ∈[F,R1]

ρ(R1) = γ(r) · ρ̃(F)

over φ′ in [A(aB@b), F] ∪ [B(bA@a), F], and therefore,

ψ(δ−(r))(F) can indeed be expressed as a function of

fragment concentrations (here F ’s concentration is enough).

Pick now a t in Pos′(r, F). Similarly, by Prop. VI.8, there

is a unique embedding φ′ between A(a) or B(b) and F . If

we denote by F ′
φ′ the antecedent of F , that is to say the

fragment obtained by setting the binding state of site a to

B@b (in the first case) or that of site b to A@a (in the second

case) in the unique agent in the range of φ′, then the proper

production of F is a sum of the following terms:

γ(r)
|[F, F]| · ρ(F ′

φ′)

over φ′ between [A(a), F] ∪ [B(b), F], and therefore,

ψ(δ+(r))(F) can also be expressed as a function of frag-

ment concentrations.

If r is the second form of trivial rule, A(a−) → A(a),
one can refine r by finding in the CM all potential bindings

partners B(b). Depending on whether the refining bond is

soft or not, one ends up with a refinement as above, or below

where we consider general rules.

4) Non-trivial rules (consumption): Let us split first the

sum that expresses the proper consumption of F by r:

γ(r)
|[F, F]| ·

∑
(Ri,φRi

),(Pj),φP∈r̂

∑
k,φ∈[F,Rk]

∏
i ρ(Ri)

according to k, the index of the reactant into which F
embeds. Then, we can factor each summand by noticing

that the set r̂ is in bijection with the Cartesian product:
∏

i{(Ri, φRi
) | φRi

∈ [Ci, Ri]}
and also that for a tuple t = (Ri, φRi

), (Pj), φP , k, φ,

whether t is mute, only depends on k, Rk, φRk
, and, of

course, the embedding φ in [F,Rk] (Fig. 6).

This yields an equivalent expression for the proper con-

sumption of the form:

γ(r)
|[F, F]| ·

∑
k

∏
i Θ(i, k)

For any i �= k, Θ(i, k) is the sum of ρ(Ri) for each species

Ri ∈ V and each embedding φi in [Ci, Ri]. This sum is

equal to ρ(Ci). By Prop. VI.5, Ci can be embedded into a

fragment, thus, by Prop. VI.4, ρ(Ci) can be expressed as a

linear combination of fragment concentrations.

There remains Θ(k, k). If Ck is not modified by r, we

have Θ(k, k) = 0. Otherwise, Θ(k, k) is the sum of the

terms ρ(Rk), over co-spans φRk
, φ, Rk.

As in the first case of trivial rule, we build a bijection

between the φRk
s such that φRk

∈ [Ck, Rk] and the φ′s
such that φ′ ∈ [Ck, F] (Fig. 6). By definition of Neg′(r, F),
there exists i, i′ such that φ(i) = φRk

(i′) (with a site in the

agent φ(i) modified by r): this defines an overlap between

F and Ck, and by Prop. VI.6, there exists an embedding

φ′ ∈ [Ck, F] with φRk
= φ′φ.

By Cor. IV.5, φ′ is uniquely defined by Rk, F , φ and φRk
.

Conversely, given φ and φ′ such that φ ∈ [F,Rk] and φ′ ∈
[Ck, F], we have φφ′ ∈ [Ck, Rk]. Thus we have the expected

377377

bijection between the φRk
s such that φRk

∈ [Ck, Rk] and

the φ′s such that φ′ ∈ [Ck, F].
As a consequence, Θ(k, k) is equal to the sum of the

terms ρ(Rk) for any Rk, φ and φ′ such that φ ∈ [F,Rk]
and φ′ ∈ [Ck, F]. Hence:

Θ(k, k) =
∑

φ′∈[Ck,F]

∑
Rk,φ∈[F,Rk] ρ(Rk)

=
∑

φ′∈[Ck,F] ρ(F)

where the second equation comes by definition of ρ.

Putting everything together, and using |[F, F]| · ρ̃(F) =
ρ(F), we get that the proper consumption of F by r is the

sum of the following terms:

γ(r) · ρ̃(F)
∏

i �=k ρ(Ci)

over k’s such that the kth component Ck of r is modified

by r, and over φ′ in [Ck, F]. Every of these terms can

be expressed as a function of fragment concentrations by

Prop. VI.5.

5) Non-trivial rules (production): Pick a production tu-

ple:

t = (Ri, φRi
), (Pj), φP , k, φ ∈ Pos′(r, F)

together with the family the canonical injection φPk
from

Pk to P1, . . . , Pm, and the co-span φPk
φ, φP , P1, . . . , Pm.

Since t ∈ Pos′(r, F), there exists i, i′ such that φPk
φ(i) =

φP(i′). Thus we have a unique overlap (up to isomorphism)

ω(t) = X, ψ1, ψ2, γ1, γ2, Y between F and Er (see Fig. 7).

We can partition Pos′(r, F) and split the proper production

of F according to the overlap ω between F and Er (we

shall recall that, for counting purposes, we have fixed a

representative in each isomorphism class of overlaps).

This allows us to rewrite the proper production term as a

sum over the overlaps ω between F and Er of the following

terms:

Γ(ω) =
γ(r)

|[F, F]|
∑

{t∈Pos′(r,F)|ω(t)=ω}
∏

i ρ(Ri)

Let us fix the overlap ω = X, ψ1, ψ2, γ1, γ2, Y , and write

r′ = E′
	, E

′
r for the right refinement {r}(Y, γ2) of r along

γ2 (§V-A). We also write Ê′
	 = C ′

1, . . . , Cn′ as a sequence

of pattern components.

If the number of non-empty connected patterns in E	 and

in E′
	 differ (ie n �= n′), there is no corresponding production

triple, so Γ(ω) = 0. Likewise, if F does not overlap with

Er on a modified site, Γ(ω) = 0.

Otherwise, by Prop. V.2, the expression Γ(ω) is equal to

the sum of the
∏

i ρ(R′
i) for any tuple (R′

i, φR′
i
: 1 ≤ i ≤ n)

where for all i, φR′
i
∈ [C ′

i, R
′
i].

Clearly, the set of such tuples is in bijection with the

Cartesian product

∏
i{(R′

i, φR′
i
) | φR′

i
∈ [C ′

i, R
′
i]}

so one has:

Γ(ω) =
γ(r)

|[F, F]| ·
∏

1≤i≤n

∑
φR′

i
∈[C′

i
,R′

i
] ρ(R′

i)

=
γ(r)

|[F, F]| ·
∏

1≤i≤n ρ(C ′
i)

Putting everything together, we get that the proper pro-

duction of the fragment F is given by the sum of the

expressions:
γ(r)

|[F, F]|
∏

i ρ(C ′
i)

for any overlap X,ψ1, ψ2, γ1, γ2, Y between F and Er (on

a modified site), and where C ′
i is the ith non-empty pattern

component of the lhs of the right refinement {r}(Y, γ2).
By Prop. VI.7, the pattern component C ′

i can be embedded

into a fragment, so by Prop. VI.4, all terms above can be

expressed as linear combinations of fragment concentrations.

6) Conclusion of the construction: We have successfully

expressed ψ(F(ρ))(F) as the sum over r of the difference

ψ(δ+(r))(F) − ψ(δ−(r))(F), in the sense that in all cases

we could write all non-mute contributions in these terms

as polynomial functions of the concentrations of fragments.

Thus, we have obtained a polynomial endoapplication F
�

on the set of abstract states V� → R
+, which is clearly

continuously differentiable, and defines a differential system.

Theorem VII.1 (Fragmentation). The abstraction function
ψ (defined in §VI-D) and abstract counterpart F

� (defined
above) form a reduction (as defined in Th. III.3) of the
differential system F.

Proof: By construction, one has ψ ◦ F = F
� ◦ ψ.

Inspecting the polynomial form obtained for F
�(ψ(ρ))(F),

one sees that production terms are polynomials with positive

coefficients, while consumption ones are opposite of poly-

nomials with positive coefficients, where in addition one

can always factor ρ(F). This implies the existence of the

repelling functions as required in Def. III.1.

It is easy to verify that in the particular case where one

chooses species as fragments (what we called earlier the

trivial aCM), the above derivation gives exactly the concrete

differential semantics.

VIII. APPLICATION

We have implemented a prototype of our framework in

Objective Caml [56] (7, 000 lines of code excluding the

front-end and rule simplification). We have tested this proto-

type on several examples: a model of the early EGF pathway

[55], two models of cross-talk between the EGF and insulin

receptors (the first model, INS1, is taken from [35, table 7]

whereas the second, INS2, is obtained by removing certain

tests in the unbinding rule for EGF receptors), and a version

of our pilot study on a larger section of the EGF pathway

[2], [55], [57], [58].

378378

model EGF INS1 INS2 SFB

number of rules 39 76 74 69
rule simplication 0.28 0.75 0.78 0.56

concrete semantics
number of species 356 2899 2899 ≈2.1019

ODE computation 2.85 27 27 ∗
abstract semantics
number of fragments 38 208 88 ≈2.105

ODE computation 0.13 0.72 0.28 871

Figure 8. Size and computation time (in seconds) of the concrete and
abstract semantics.

We give, in Fig. 8, the number of rules, the computation

time for automatic rule simplification [24], the exact number

of dimensions and computation time of the concrete seman-

tics, and the number of dimensions and computation time

of the abstract semantics (which, we recall, is computed

directly without precomputing the concrete one). Compu-

tation time also includes output generation (both for Latex

and Octave [59]) that takes roughly half of the computation

time. These results have been obtained on an Intel Centrino

Duo, 2G RAM, 2GHz PC and show that our framework can

scale to interesting pathways.

An important factor of reduction comes from the dissec-

tion of dimers. In Fig. 5(b), there are two classes {r, l, Y48}
{r, l, Y68} for the sites of EGFR, and the bond between the

site r and itself is soft. If we assume that p species can

connect to the site Y48 of EGFR, and q species can connect

to the site Y68, there will be roughly 1
2 ((p + 1)(q + 1))2

potential dimers, which are abstracted by only (p + q + 2)
fragments. In the model INS1, the dimerization bond is

solid which leads to a less efficient reduction, since one

has roughly 1
2 (p + q)2 fragments for dimers.

In Fig. 9, we show the superposition of the behaviours

of the EGF model in one stochastic simulation [50] and

during integration of the abstract semantics. We have chosen

as observables the number of proteins SOS that are attached

to a receptor EGFR. The protein SOS can be attached to the

receptor by two ways called the short arm and the long arm.

The two semantics match, although only the correspondence

between the concrete differential semantics and the reduced

differential semantics have been explored in this paper.

IX. CONCLUSION

We have shown a new application for abstract interpreta-

tion by using it to reduce the dimension of the (ordinary)

differential semantics of rule-based models and prove that

the trajectories in the reduced system are projections of the

trajectories in the concrete system. In realistic examples this

can make a real difference, as models with an inherently

intractable concrete semantics get a much smaller abstract

semantics. This means one can study, eg calibrate those mod-

els, using ODE integration which is faster than stochastic

simulation. Combined with numerical approximation, our

Figure 9. Concentration of proteins SOS attached to the membrane in
a stochastic simulation (wiggly curves) and in the (abstract) differential
semantics, via the short arm (upper curve) and the long arm (lower curve).
Units (time, concentration) and rule rate constants are arbitrary.

technique should extend significantly the reach of modelling

in the context of large networks, where it is the most

needed. Note also that the abstract/reduced semantics is

likely to be more accurately related to the stochastic one,

than the concrete one, as it deals with larger populations of

(smaller) objects. This prompts the remark that one should

be able to extend the scope of the method to encompass

infinite-dimensional differential semantics [60], for which

the compressed version is nevertheless finite.

There is also scope to design more efficient approxima-

tions. To this effect, we could detect and use symmetries

between sites and potentially relax certain hypotheses on

fragments so as to obtain smaller ones. Another interesting

avenue for further investigation is that of the relationship

between the stochastic and differential semantics in agent-

based models, as the ODE compression of a rule-based

system could be shown directly to approximate its natural

stochastic semantics.

The abstraction of the stochastic semantics cannot work

directly with our approach (which was not intended for

this) because, in the case of fragments with common sites,

reactions that are applied to these fragments are coupled by

the correlation between the states of sites in these fragments

- which is exactly the information that our abstract does

not detect (as discussed in §II). This issue is addressed

in Ref. [61], by detecting a notion of stochastic fragment,

different than the one we have used here in the determin-

istic case, on the states of which reactions cannot enforce

correlations.

ACKNOWLEDGMENT

Jérôme Feret’s contribution was partially supported by the

ABSTRACTCELL ANR-Chair of Excellence.

379379

REFERENCES

[1] V. Danos and C. Laneve, “Formal molecular biology,” Theo-
retical Computer Science, vol. 325, no. 1, pp. 69–110, 2004.

[2] V. Danos, J. Feret, W. Fontana, R. Harmer, and J. Krivine,
“Rule-based modelling of cellular signalling,” in Proc. of
CONCUR’07, ser. LNCS, vol. 4703. Springer, 2007, pp.
17–41.

[3] J. Faeder, M. Blinov, and W. Hlavacek, “Rule-based modeling
of biochemical systems with BioNetGen,” Methods Mol. Biol,
vol. 500, pp. 113–167, 2009.

[4] V. Danos, J. Feret, W. Fontana, R. Harmer, and J. Kriv-
ine, “Rule-based modelling of cellular signalling,” CONCUR
2007, pp. 17–41, 2007.

[5] C. Kühn, K. Prasad, E. Klipp, and P. Gennemark, “Formal
Representation of the High Osmolarity Glycerol Pathway in
Yeast,” Genome Informatics, pp. 22–83, 2010.

[6] P. Cousot and R. Cousot, “Abstract interpretation: a unified
lattice model for static analysis of programs by construction
or approximation of fixpoints,” in Proc. of POPL’77. ACM
Press, 1977, pp. 238–252.

[7] T. Pawson and P. Nash, “Assembly of cell regulatory systems
through protein interaction domains,” Science, vol. 300, no.
5618, pp. 445–52, Apr 2003.

[8] S. G. Peisajovich, J. E. Garbarino, P. Wei, and W. A.
Lim, “Rapid diversification of cell signaling phenotypes by
modular domain recombination,” Science, vol. 328, no. 5976,
pp. 368–372, Apr 2010.

[9] B. Yeh, R. Rutigliano, A. Deb, D. Bar-Sagi, and W. Lim,
“Rewiring cellular morphology pathways with synthetic gua-
nine nucleotide exchange factors,” Nature, vol. 447, no. 7144,
pp. 596–600, 2007.

[10] C. Bashor, N. Helman, S. Yan, and W. Lim, “Using engi-
neered scaffold interactions to reshape map kinase pathway
signaling dynamics,” Science, vol. 319, no. 5869, p. 1539,
2008.

[11] V. Danos and C. Laneve, “Formal molecular biology,” Theo-
retical Computer Science, vol. 325, no. 1, pp. 69–110, Sep.
2004.

[12] M. L. Blinov, J. R. Faeder, and W. S. Hlavacek, “BioNetGen:
software for rule-based modeling of signal transduction based
on the interactions of molecular domains,” Bioinformatics,
vol. 20, pp. 3289–3292, 2004.

[13] A. Regev, W. Silverman, and E. Shapiro, “Representation
and simulation of biochemical processes using the π-calculus
process algebra.” in Proc. of the Pacific Symposium of Bio-
computing, 2001, pp. 6:459–470.

[14] A. Regev, E. M. Panina, W. Silverman, L. Cardelli, and
E. Shapiro, “Bioambients: An abstraction for biological com-
partments,” Theoretical Computer Science, 2003.

[15] C. Priami and P. Quaglia, “Beta binders for biological inter-
actions,” Proc. of CMSB’04, vol. 3082, pp. 20–33, 2004.

[16] F. Ciocchetta and J. Hillston, “Bio-PEPA: A framework for
the modelling and analysis of biological systems,” TCS, vol.
410, no. 33-34, pp. 3065–3084, 2009.

[17] W. Fontana, “Systems biology, models, and concurrency,” in
Proc. of POPL’08. ACM, 2008, pp. 1–2.

[18] M. Abadi, “Secrecy by typing in security protocols,” Journal
of the ACM, vol. 46, pp. 611–638, 1999.

[19] J. Feret, V. Danos, J. Krivine, R. Harmer, and W. Fontana,
“Internal coarse-graining of molecular systems,” Proc. of the
National Academy of Sciences, vol. 106, no. 16, pp. 6453–
6458, 2009.

[20] H. R. Nielson, F. Nielson, and H. Pilegaard, “Spatial analysis
of bioambients,” in Proc. SAS’04, ser. LNCS, vol. 3148, 2004,
pp. 69–83.

[21] J. Feret, “Analysis of mobile systems by abstract interpreta-
tion,” Ph.D. dissertation, École Polytechnique, 2005.

[22] R. Gori and F. Levi, “A new occurrence counting analysis for
bioambients,” in Proc. of APLAS’05, ser. LNCS, vol. 3780.
Springer, 2005, pp. 381–400.

[23] J. Feret, “Reachability analysis of biological signalling path-
ways by abstract interpretation,” in Proc. of ICCMSE’07.
American Institute of Physics conference proceedings, 2007.

[24] V. Danos, J. Feret, W. Fontana, and J. Krivine, “Abstract
interpretation of biological signalling networks,” in Proc. of
VMCAI’08, ser. LNCS, vol. 4905. Springer, 2008, pp. 42–58.

[25] R. Gori and F. Levi, “An analysis for proving temporal
properties of biological systems,” in Proc. of APLAS’06, ser.
LNCS, vol. 4279. Springer, 2006, pp. 234–252.

[26] O. Bouissou and M. Martel, “Grklib: a guaranteed Runge
Kutta library,” in Proc. of SCAN ’06. IEEE Computer
Society, 2006, p. 8.

[27] A. Girard and C. Le Guernic, “Zonotope/hyperplane inter-
section for hybrid systems reachability analysis,” in Proc. of
HSCC’08, ser. LNCS, vol. 4981, 2008, pp. 215–228.

[28] ——, “Efficient reachability analysis for linear systems using
support functions,” in Proc. of IFAC’08. IFAC, 2008.

[29] J. Feret, “Static analysis of digital filters,” in Proc. of
ESOP’04, ser. LNCS, vol. 2986. Springer, 2004.

[30] ——, “Numerical abstract domains for digital filters,” 2005,
nSAD’05.

[31] O. Bouissou and M. Martel, “Abstract interpretation of the
physical inputs of embedded programs,” in Proc. of VM-
CAI’08, ser. LNCS, vol. 4905. Springer, 2008, pp. 37–51.

[32] A. Chapoutot, “Simulation abstraite : une analyse statique de
modèles simulink,” Ph.D. dissertation, École Polytechnique,
December 2008.

[33] N. M. Borisov, N. I. Markevich, B. N. Kholodenko, and
E. D. Gilles, “Signaling through receptors and scaffolds:
Independent interactions reduce combinatorial complexity,”
Biophysical Journal, vol. 89, pp. 951–966, 2005.

380380

[34] H. Conzelmann, J. Saez-Rodriguez, T. Sauter, B. N. Kholo-
denko, and E. D. Gilles, “A domain-oriented approach to the
reduction of combinatorial complexity in signal transduction
networks,” BMC Bioinformatics, vol. 7, p. 34, 2006.

[35] H. Conzelmann, D. Fey, and E. D. Gilles, “Exact model
reduction of combinatorial reaction networks,” BMC Systems
Biology, vol. 2, p. 78, 2008.

[36] H. Conzelmann, “Mathematical modeling of cellular signal
transduction pathways — a domain-oriented approach to
reduce combinatorial complexity,” Ph.D. dissertation, Institut
für Systemdynamik des Universität Stuttgart, 2008.

[37] N. M. Borisov, A. S. Chistopolsky, J. R. Faeder, and B. N.
Kholodenko, “Domain-oriented reduction of rule-based net-
work models,” IET Syst. Biol., vol. 2, pp. 342–351, 2008.

[38] D. Monniaux, “Abstract interpretation of probabilistic seman-
tics,” in Proc. of SAS’00, ser. LNCS, vol. 1824. Springer
Verlag, 2000, pp. 322–339.

[39] ——, “An abstract Monte-Carlo method for the analysis
of probabilistic programs (extended abstract),” in Proc. of
POPL’01. ACM, 2001, pp. 93–101.

[40] A. Coletta, R. Gori, and F. Levi, “Approximating probabilistic
behaviors of biological systems using abstract interpretation,”
ENTCS, vol. 229, no. 1, pp. 165–182, 2009.

[41] A. Di Pierro and H. Wiklicky, “Probabilistic abstract in-
terpretation and statistical testing,” in Proc. of PAPM-
PROBMIV’02. Springer, 2002, pp. 211–212.

[42] R. Giacobazzi, F. Ranzato, and F. Scozzari, “Making abstract
interpretations complete,” Journal of the ACM, vol. 47, no. 2,
pp. 361–416, 2000.

[43] R. Giacobazzi and E. Quintarelli, “Incompleteness, coun-
terexamples and refinements in abstract model-checking,” in
Proc. of SAS’01, ser. LNCS, vol. 2126. Springer, 2001, pp.
356–373.

[44] E. L. Ince, Ordinary Differential Equations. Dover Publica-
tions, 1956.

[45] R. Cartwright and M. Felleisen, “The semantics of program
dependence,” in Proc. of PLDI’89, 1989, pp. 13–27.

[46] R. Giacobazzi and I. Mastroeni, “Non-standard semantics for
program slicing,” in Special issue on Partial Evalution and
Semantics-Based Program Manipulation, 2003, pp. 297–339.

[47] E. Murphy, V. Danos, J. Feret, R. Harmer, and J. Krivine,
“Rule based modelling and model refinement,” in Elements of
Computational Systems Biology, H. Lodhi and S. Muggleton,
Eds. Wiley Book Series on Bioinformatics, 2009.

[48] H. Ehrig and G. Rozenberg, Handbook of graph grammars
and computing by graph transformation: Applications, lan-
guages and tools. World Scientific Pub Co Inc, 1999.

[49] S. Lack and P. Sobocinski, “Adhesive categories,” in Foun-
dations of Software Science and Computation Structures.
Springer, 2004, pp. 273–288.

[50] V. Danos, J. Feret, W. Fontana, and J. Krivine, “Scalable sim-
ulation of cellular signaling networks,” in Proc. of APLAS’07,
ser. LNCS, vol. 4807. Springer, 2007, pp. 139–157.

[51] J. Leifer and R. Milner, “Deriving Bisimulation Congruences
for Reactive Systems,” in Proceedings of the 11th Interna-
tional Conference on Concurrency Theory. Springer-Verlag,
2000, pp. 243–258.

[52] E. Murphy, V. Danos, J. Feret, R. Harmer, and J. Krivine,
“Rule based modelling and model refinement,” Elements
of Computational Systems Biology. Wiley Book Series on
Bioinformatics, 2009.

[53] T. G. Kurtz, “Solutions of ordinary differential equations as
limits of pure jump Markov processes,” Journal of Applied
Probability, vol. 7, pp. 49–58, 1970.

[54] ——, “Limit theorems for sequences of jump Markov pro-
cesses approximating ordinary differential processes,” Journal
of Applied Probability, vol. 8, pp. 244–356, 1971.

[55] M. L. Blinov, J. R. Faeder, B. Goldstein, and W. S. Hlavacek,
“A network model of early events in epidermal growth factor
receptor signaling that accounts for combinatorial complex-
ity,” BioSystems, vol. 83, pp. 136–151, Jan. 2006.

[56] X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouil-
lon, “The Objective Caml system, documentation and user’s
manual (release 3.06),” INRIA, Rocquencourt, France, Tech.
Rep., 19 Aug.. 2002.

[57] B. Schoeberl, C. Eichler-Jonsson, E. D. Gilles, and G. Müller,
“Computational modeling of the dynamics of the MAP kinase
cascade activated by surface and internalized EGF receptors.”
Nat Biotechnol, vol. 20, no. 4, pp. 370–375, April 2002.

[58] F. A. Brightman and D. A. Fell, “Differential feedback
regulation of the MAPK cascade underlies the quantitative
differences in EGF and NGF signalling in PC12 cells,” FEBS
Letters, vol. 482, no. 3, pp. 169–174, October 2000.

[59] J. B. Rawlings and J. G. Ekerd, “GNU Octave,” www.octave.
org.

[60] W. L. Hart, “The Cauchy-Lipschitz method for infinite sys-
tems of differential equations,” American Journal of Mathe-
matics, vol. 43, no. 4, pp. 226–231, 1921.

[61] J. Feret, H. Koeppl, and T. Petrov, “Stochastic fragments: A
framework for the exact reduction of the stochastic semantics
of rule-based models,” International Journal of Software and
Informatics, 2010, To appear.

381381

