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Figure 12: Effect of binding strength on steady state yield of fully assembled complex in the presence
of synthesis and degradation. As in Figure 10, α = 2.53 · 106 M−1 s−1, Q = 1.31 · 10−10 M s−1, δ =
2.75 · 10−4 s−1, XT = Q/δ = 477 nM. In both cases, we can consider these curves to represent the effect of
varying affinity on rings formed from “average” yeast proteins [13,14]. (A) Model A degradation. Solid line
indicates analytical solution of equation 29; circles represent results from numerical integration of equation
15. (B) Model B degradation. Solid line indicates analytical solution of equation 34; circles represent results
from numerical integration of equation 20. Note difference in scale between (A) and (B).

with strong interactions, the steady state concentration of monomers is fairly low in both cases.

The steady state yield of the full ring depends not only on the affinity, but also on the rates of
synthesis and degradation as well as the total concentration of protein in the system. In an
analogous fashion to Figure 12, Figure 13 shows plots of yield vs. KD, but here each curve
represents a different value for the total amount of mass in the system XT , produced by changing
the synthesis rate Q while holding the degradation rate δ constant (changing Q and not δ allows
us to look specifically at the effect of changes in XT while leaving the parameter Kδ, the ratio
between the degradation rate δ and the association rate α, unchanged; see section 3.2). For each
curve, the yield Yn is calculated relative to the total amount of protein at steady state, given by
Q/δ (see section 3.2).

The curves in Figure 13 become higher for increasing XT , indicating that for any given affinity,
increasing the total amount of protein also increases the proportion of mass that assembles into
the full ring. In addition, the effect of affinity optimality also changes as a function of XT . At
very low XT , degradation, rather than deadlock, is the limiting factor in assembly, and hence
alleviating deadlock via affinity optimization has minimal effect in boosting steady state yield. At
very high XT , the larger influx of new monomers quickly alleviates deadlock, which again
mitigates the effect of overly strong interactions (purple curve). At intermediate synthesis rates,
strong interactions lead to a significant fraction of deadlocked intermediates at steady state,
which is alleviated by weakening interactions until an optimal yield is reached (green curve).
However, beyond the point of optimality, weakening affinities leads to reduced yield, regardless of
the total amount of protein in the system.
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Figure 13: Steady state yield as a function of KD and total protein concentration, model A degradation.
Results generated by numerical simulation of the ordinary differential equations described in section 2.4.1;
different values of XT were obtained by changing the value of the synthesis rate Q while holding δ at a
constant value of 2.75 · 10−4 s−1. α = 2.53 · 106 M−1 s−1.

The magnitude of the affinity optimality effect for both degradation models is summarized in
Figure 14. This figure tracks the increase in yield that can be achieved by using optimal
interactions rather than very strong interactions, for a range of values of XT . As discussed above
for Figure 13, the improvement in yield that can be gained by using optimal interactions is
dependent on the total amount of protein XT , and reaches a maximum of approximately 7.5% for
model A at XT = 24 nM with δ = 2.75 · 10−4. In addition, as discussed for Figure 12, model B
degradation exhibits a much less pronounced affinity optimality effect for all values for XT , with a
maximal improvement in yield of only 0.51% at XT = 6.0 nM.
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Figure 14: Improvement in assembly yield at optimal KD vs. very strong interactions (KD = 10−13) at
different values of XT . Results generated by numerical simulation of the ordinary differential equations
described in sections 2.4.1 and 2.4.3; different values of XT were obtained by changing the value of the
synthesis rate Q while holding δ at a constant value of 2.75 · 10−4 s−1. α = 2.53 · 106 M−1 s−1.
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Though the results shown in Figures 13 and 14 help to elucidate the underlying dynamics, our
analytical solutions for the homomeric three-ring for both model A (equation 29) and model B
(equation 34) reveal that the steady state yield is a complex function not only of KD and XT , but
also of the ratio of the degradation rate to the association rate, Kδ. We leave a thorough
characterization of the relative contributions of these different parameters to future work.
However, taken together, these results indicate that ring assembly efficiency can be inhibited by
uniformly strong interactions in the presence of synthesis and degradation, though the magnitude
of this effect depends on the particular model of degradation that is assumed and the choice of
synthesis and degradation parameters.

4.3 Effect of affinity configurations on assembly

To determine the effect of affinity configuration on the assembly efficiency of heteromeric rings, we
systematically sampled the space of possible configurations and performed numerical simulations
of assembly for each one. In this section we describe our methods for enumerating configurations
and present additional results for the assembly of 4-, 5-, and 6-membered heteromeric rings.

4.3.1 Enumerating distinct affinity configurations for heteromeric rings

To consider a large space of possible affinity configurations, we allowed the affinity at each
subunit interface to vary over seven orders of magnitude, with a KD of either 10−12, 10−11, 10−10,
10−9, 10−8, 10−7, or 10−6 M. If each subunit interface were considered to be distinct, this would
imply 73 = 343 unique configurations for the homomeric three-ring, 74 = 2401 for the four-ring,
and so on. However, as shown in Figure 15, such an approach would include many redundant
configurations differing only in the (arbitrary) labeling of the subunits. For example, having a
strong interaction between x0 and x1, a medium strength interaction between x1 and x2, and a
weak interaction between x2 and x0 (a configuration we will denote S −M −W , with the
abbreviated affinities enumerated in subunit counting order—see section 2.2.1), is equivalent in its
assembly properties to the configuration having a medium strength interaction between x0 and
x1, a weak interaction between x1 and x2, and a strong interaction between x2 and x0 (a
configuration we denote M −W − S, using the same convention). The equivalence arises from the
fact that the S −M −W arrangement of interactions can be converted into the M −W − S
arrangement simply by shifting the labels of the subunits around the ring one position while
preserving their sequential ordering. By thus considering the rotational symmetry of the
interactions around the ring we can ignore these dynamically identical configurations.

In addition, since the affinity configurations under consideration are two-dimensional and do not
distinguish a “top” or “bottom” for the ring, to identify unique configurations we must also note
that the subunit counting direction—clockwise vs. counter-clockwise—also does not affect the
dynamics. Changing the subunit counting direction is equivalent to reflecting the subunit labels
about an axis in the plane, which can also be imagined as “flipping” the ring structure over. As
shown in Figure 15, if the subunit labels for the ring with the affinity configuration S −M −W
are “flipped over” or reflected, it results in the nominally distinct configuration W −M − S; while
the counting order of the interactions has changed from clockwise to counter-clockwise, the
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Figure 15: Ring symmetries. A unique affinity configuration can be given several different names depending
on how subunits are labeled or counted. To identify all unique affinity configurations, all possible notation-
ally distinct configurations are considered and then redundant configurations are eliminated. Redundant
configurations are identified by their equivalence to an existing configuration via rotational symmetry, cor-
responding to a change in the placement of the first subunit label x0 along the ring, or by symmetry of
reflection, corresponding to a change in the direction in which subunits are enumerated. By considering
these two types of symmetry, the six notationally distinct affinity configurations shown can be seen to be
equivalent, and represented by a single member, S −M −W .

assembly dynamics of the configuration have not changed. Thus, nominally distinct
configurations that are identical by the symmetries of rotation and reflection can be ignored, and
only one representative of the family of equivalent configurations need be considered for analysis.

Proceeding in this fashion, we enumerated the unique affinity configurations for the 3-, 4-, 5-, and
6-membered rings, allowing the KD at each interface to vary over seven orders of magnitude as
described above. With the exclusion of configurations that are redundant by symmetry, we obtain
a significantly reduced number of possible configurations (see Table 1).

Ring Length Unique Configurations

3 81
4 406
5 1,855
6 10,528
7 60,028

Table 1: Numbers of distinct affinity configurations for rings of different lengths after accounting for sym-
metries (see Figure 15).
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4.3.2 Numerical simulation results for the heteromeric 3-, 4-, 5-, and 6-rings

For each of the affinity configurations enumerated as above we ran numerical simulations of
heteromeric ring assembly using the systems of ordinary differential equations described in
sections 2.2.2, 2.4.2 and 2.4.4.

For the three-ring (Fig. 3A in the main text, reproduced here as Figure 16), the results show that
configurations involving either one or two weak interactions assemble more efficiently than
configurations involving uniform interactions. As shown in the inset plots, the differences in
efficiency between configurations with one or two weak interactions are very small in absolute
terms. It is also worth noting that the relative T99 rankings of one- versus two-weak interaction
configurations is dependent in part on monomer concentration, while the model A and model B
rankings are not.
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Figure 16: Ranking the assembly efficiency and yield of affinity configurations for the heteromeric three-
ring. This figure corresponds to Fig. 3A in the main text and is included here for completeness. For
calculation of T99, simulations were performed with initial monomer concentrations of 477 nM for each
subunit. For simulations of model A and model B degradation, Q = 1.31·10−10 M s−1 and δ = 2.75·10−4 s−1.
XT = Q/δ = 477 nM. For all simulations, α = 2.53 · 106 M−1 s−1. “One Weak” denotes a configuration
with binding strengths (i.e., KDs) of 10−12, 10−12, and 10−6 M. “Two Weak”: 10−12, 10−6, and 10−6 M;
“All Medium”: 10−8, 10−8, and 10−8 M; “All Weak”: 10−6, 10−6, and 10−6 M; “All Strong”: 10−12, 10−12,
and 10−12 M.

For the four-ring (Figure 17), the configuration containing alternating strong and weak
interactions outranked other configurations based on T99 and model A yield; for model B,
however, the configuration with a single weak interaction resulted in the highest yield.
Configurations with either one or two weak interactions (with the rest strong) outperformed
configurations with uniform interactions or more than two weak interactions.

The results for the five-ring (Figure 18) were similar to those for the four-ring: again,
configurations with two weak interactions assembled with the lowest values for T99, slightly ahead
of the one-weak interaction configuration. However, the one-weak interaction configuration
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Figure 17: Ranking the assembly efficiency and yield of affinity configurations for the heteromeric four-ring.
Parameters as for Figure 16. “S”, “M”, and “W” denote strong (KD = 10−12 M), medium (KD = 10−8 M),
and weak (KD = 10−6 M) interactions, respectively.

produced the highest model B yield. Configurations with uniform affinities assembled both with
low efficiency and low yield. Interestingly, changing the strength of one interaction in the
configuration S − S − S −W −W from strong to medium (resulting in the configuration
S − S −M −W −W ) dramatically reduces its performance relative to the other configurations.
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Figure 18: Ranking the assembly efficiency and yield of affinity configurations for the heteromeric five-ring.
Parameters as for Figure 16; “S”, “M”, and “W” denote strong (KD = 10−12 M), medium (KD = 10−8 M),
and weak (KD = 10−6 M) interactions, respectively.
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The results for the six-ring (Figure 19) also indicate the assembly efficiency of rings with either
one or two weak interactions. Both configurations with two weak interactions slightly outperform
the one-weak interaction configuration for T99 and model A yield, while the one-weak interaction
produces a higher model B yield. All three outperform uniform configurations or configurations
with more than two weak interactions. Interestingly, the configuration with alternating strong
and weak interactions does not perform as well by any metric as the configurations with either
one or two weak interactions. This result, along with the results for the four-ring, in which
alternating strong-weak interactions performed very well, suggests that the key to assembly
efficiency is not alternating strong and weak interactions in and of itself, but the presence of two
weak interactions. This may be due to the fact that a ring with two weak interactions may be
able to assemble in two halves that then “snap” together to form a stable ring.
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Figure 19: Ranking the assembly efficiency and yield of affinity configurations for the heteromeric six-ring.
Parameters as for Figure 16. “S”, “M”, and “W” denote strong (KD = 10−12 M), medium (KD = 10−8 M),
and weak (KD = 10−6 M) interactions, respectively.

4.3.3 Optimizing the assembly of chains

To provide a contrast to our results for heteromeric three-membered rings (Figure 16), we
considered how affinity configuration influences the assembly efficiency of four-membered
heteromeric chains. Although these two structures share the same number of interactions, chains
lack the rotational symmetry of rings, and as such there are over twice as many distinct
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configurations in this case (196 for the chains vs. 81 for the rings). Given some affinity
configuration (and its attendant dissociation rates β1 to β3), we performed numerical simulations
of simple heteromeric chain assembly, assembly with model A degradation, and assembly with
model B assembly (the equations used for these calculations are listed in section 2.5).

The relative performance of these affinity configurations is compared in Figure 20. Since chains
are generally much less stable than rings (see section 1), most of the configurations sampled here
did not assemble to a level of 99%, making it impossible to define T99 as for rings. In simulations
that did not consider synthesis and degradation, we thus calculated equilibrium yield instead
(“Eq. Yield” in Figure 20). Note that, in stark contrast to the behavior for rings, for chains
stronger is always better, regardless of the efficiency metric in question.
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Figure 20: Ranking the assembly efficiency and yield of affinity configurations for the heteromeric 4-
membered chain. Given that most affinity configurations do not assemble to 99% at the concentration
considered here, in this case we use equilibrium yield (the ‘Eq. Yield’ column to the far left of the ranking
plot) rather than T99 to characterize assembly efficiency in the absence of synthesis and degradation. The
equilibrium yields were calculated at a total concentration of 477 nM for each monomer type. For simulations
of model A and model B degradation, Q = 1.31 ·10−10 M s−1 and δ = 2.75 ·10−4 s−1. XT = Q/δ = 477 nM.
For all simulations, α = 2.53 · 106 M−1 s−1. “One Weak” denotes a configuration with binding strengths
(i.e., KDs) of 10−12, 10−12, and 10−6 M. “Two Weak”: 10−12, 10−6, and 10−6 M; “All Medium”: 10−8, 10−8,
and 10−8 M; “All Weak”: 10−6, 10−6, and 10−6 M; “All Strong”: 10−12, 10−12, and 10−12 M.

4.4 Hierarchical assembly pathways

As discussed in section 4.3 above, introducing weak interactions into heteromeric ring structures
can dramatically improve their assembly efficiency according to a wide variety of measures. In
this section we compare an alternative mechanism by which kinetic assembly bottlenecks can be
addressed: namely, the sequential, stepwise assembly of subunits to form the ring. In the case of
the heteromeric three-ring, this type of assembly would imply that, for example, x0 can bind x1,

52



but the binding of x1 to x2 is contingent on x1’s being bound to x0, and the binding of x2 to x0 is
similarly contingent on x2’s being bound to x1. This model represents a case where allosteric
interactions—or other sources of hierarchical structure—force assembly to proceed sequentially,
thus preventing the accumulation of assembly intermediates that are incompatible. Yin and
coworkers have deployed precisely this approach to optimize the assembly process of cyclic DNA
nanostructures [15]. To compare the assembly efficiency of this allosteric approach with the
biophysical strategies described in section 4.3, we created and analyzed a model of stepwise
assembly as described below.

4.4.1 Mathematical model of stepwise assembly

Before proceeding, we describe here the set of ordinary differential equations used to model the
assembly of a heteromeric three-ring via sequential, stepwise assembly. We use the notational
convention for heteromeric rings described in section 2.2.1. In this highly simplified model, there
is no binding between x1 and x2, or between x2 and x0, unless x0 has first bound to x1. As a
result, the concentrations of the dimers x1,2 and x2,2 are zero for all time. In addition, because
the ring breakage rate is much smaller than the dissociation rate (i.e., γ << β) for the parameter
values we consider below, for simplicity we ignore the process of ring breakage in this case (i.e. we
set γ = 0).

The ODEs are as follows:

dx0,1

dt
= βx0,2 − αx0,1x1,1

dx1,1

dt
= βx0,2 − αx0,1x1,1

dx2,1

dt
= −αx2,1x0,2

dx0,2

dt
= αx0,1x1,1 − βx0,2 − αx0,2x2,1

dx3

dt
= αx2,1x0,2. (40)

4.4.2 Comparing sequential assembly with weak interactions

To compare between sequential assembly and the biophysical strategies discussed in section 4.3,
we numerically integrated the ODEs from equation 40. In Figure 21 we compare the assembly
dynamics of this sequential model, a ring containing a single very weak interaction, and a ring
with uniformly strong interactions. In this case we have chosen affinity configurations such that
the uniform case and the single weak interaction case exhibit identical thermodynamic stabilities.
We find that the single weak interaction configuration always assembles faster than the sequential
case, although the magnitude of this difference varies with total monomer concentration.
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Figure 21: Assembly timecourses for three-membered heteromeric rings with uniform interactions (KDs of
10−9), one weak interaction (KDs of 10−12, 10−12, and 10−3), and sequential assembly (uniform KDs of
10−9). α = 2.53 · 106 M−1 s−1. For simplicity, the ring breakage rate γ is set to zero in all cases. (A)
Monomer concentration of 40 µM. (B) Monomer concentration of 0.4 nM. Although the three cases here
have equivalent thermodynamic stability, they display different assembly kinetics. Note that the “one weak
interaction” configuration consistently assembles faster than the sequential case, though the magnitude of
this difference depends on concentration.

The differences observed in Figure 21 can be best understood in terms of a schematic view of the
assembly process, Figure 22. In this illustration, we consider a pool of monomers A, B, and C
that interact with each other to form a heteromeric ring. For simplicity, we do not explicitly
consider trimer formation in this schematic, focusing entirely on the process of monomers binding
to form dimers.

For the non-sequential assembly models (Figure 22, panels A and B), there are three “paths” that
the system can take to assemble full rings from a starting pool of monomers: 1) bind A and B,
then C; 2) bind A and C, then B; 3) bind B and C, then A. Configurations with uniformly
strong interactions attempt to take all three paths simultaneously (represented by the fact that
all possible dimers are present in Figure 22A). When concentrations are high, the system
consumes all possible monomers too quickly, and since the interactions are strong, a plateau is
induced (as discussed above and in the main text). During the plateau phase, assembly via any
given path can only proceed when the system “backtracks” from one of the other paths through
dissociation of a dimer. Uniformly strong interactions thus lead to unavoidable deadlocks at high
concentrations (Figure 21A).

When one of the interactions along the ring is weak, although the system can in theory take all
three possible assembly paths, only two of those paths will actually be taken by the majority of
proteins in the system. If we make the A−C interaction weak, any monomers attempting to take
path number “2” by first forming an A− C interaction will ultimately be unsuccessful, since this
interaction will tend to break soon after formation. This fact is represented schematically in
Figure 22B by the lack of A−C dimers. As the schematic demonstrates, any monomers that take
a given path (say, by forming the stable A−B dimer) are guaranteed to have access to the
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Figure 22: Schematic diagram of ring assembly. Shown are the interactions that would form after an
arbitrary amount of time given a pool of monomers at equal concentrations and equivalent association rates.
For simplicity, only the formation of dimers is considered here. (A) Uniform interactions: all possible dimers
can form. (B) One weak interaction: A−B and B − C dimers can form, but encounters between A and C
do not result in a stable interaction. (C) Sequential assembly: only encounters between A and B result in a
stable interaction. Since the association rates are the same as in (A) and (B), the number of A−B dimers
formed is the same (two of the four possible).

cognate monomer needed to complete assembly (C in this example). Configurations with a single
weak interaction thus avoid the problem of deadlock at high concentrations and achieve efficient
assembly across a wide variety of conditions (see Fig. 3 in the main text).

In the sequential case, assembly can only proceed down a single path—in our example, this is
path “1” (Figure 22C). This strategy avoids the potential for deadlock, and as such we do not see
a plateau here (Figure 21A). The fact that sequential assembly occurs more slowly than “single
weak interaction” assembly arises from the fact that the latter can take two paths concurrently,
while the former is forced to take only one. Since the association rate is assumed to be identical
for both cases, weak interaction assembly initially exhibits twice the number of productive
reactions (a fact schematized by the existence of both A−B and B − C dimers in Figure 22B vs.
only A−B dimers in Figure 22C).

We thus find that inclusion of a single weak interaction in a “concurrently” assembling trimer
provides the best of both worlds—fast assembly at low concentrations while avoiding deadlock at
high concentrations. It is important to note that our analysis here is not exhaustive, and there
may be conditions in which sequential assembly will be favored over the concurrent case. We
leave further exploration of these alternative approaches to future work.
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4.5 Non-uniform concentrations

Since each protein in a heteromeric ring will be transcribed and translated from a separate gene,
such rings have the capacity to not only demonstrate variation in affinities (as discussed above)
but also the total concentration of each subunit. Such differences could easily arise from the
inherent stochastic nature of gene expression [16], or from differences in gene regulation between
subunits in the cell. To test the potential effects of such variation, we considered the assembly
dynamics of a three-membered heteromeric ring in a situation where one subunit has a higher
total concentration than the other two.
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Figure 23: Assembly dynamics of a three-member heteromeric ring with non-uniform subunit concentrations.
The black curve represents a case where all subunits are in stoichiometric concentrations (i.e. the situation
considered extensively above and in the main text). The red curve represents a case where a single subunit
is at double the concentration of the other two, and the green curve represents a case where one subunit
is triple the concentration of the other two. As one can see, as the difference in concentrations increases,
the plateau becomes “lower” and persists longer (i.e. T99 increases dramatically). In all plots, two of the
subunits are present at 4 µM concentration, while the other varies from 4 to 12 µM. The affinities in this
case are uniform with KDs of 10−9 M, and the parameter α = 2.53 · 106 M−1 s−1.

As one can see from Figure 23, increasing the concentration of a single subunit exacerbates
deadlock, resulting in a deadlocked plateau that occurs at a lower assembly yield and that persists
longer. This occurs because the subunit that is at higher concentration (say, the “A” subunit of a
“ABC” heteromeric ring) rapidly binds to the other two subunits, forming a comparatively large
number of AB and AC dimers that must dissociate in order for assembly to proceed to
completion. These findings highlight the fact that the dynamics of assembly in this case depend
not solely on KDs (i.e. the free energy of binding) but also on subunit concentrations (which
influence the chemical potential of the bimolecular reactions in question). It is currently unclear if
either hierarchical assembly or simple affinity configurations can overcome the increased deadlock
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resulting from non-uniform concentrations. We leave complete consideration of how chemical
potential landscapes might evolve to manage differences in subunit concentration to future work.

5 Analysis of structural data

5.1 Structures for heteromeric three-membered rings

Our work strongly implies that structures that include at least one weak interaction will enjoy an
evolutionary advantage, either in terms of assembly time or steady-state yield (Fig. 3A of the
main text). We explored the solved structures of ring-like complexes in order to assess if there
was any evidence for the existence of such weak interactions in the ring-like complexes found in
living systems.

We began by assembling a set of three-membered heteromeric rings of known structure. We used
the database 3D Complex [17] as a starting point for collecting the structures, and based our
analysis on all heteromeric three-membered complexes in that database with a ring-like topology.
In order to reduce the redundancy of the data set (i.e. to avoid considering two very closely
related or identical rings as different examples of evolutionarily optimized structures), we utilized
the “QS-90” level of the 3D Complex hierarchy [17]. At QS-90, complexes with greater than 90%
sequence identity are grouped together into a single class, from which a single representative
structure is taken. Using the QS-90 level of the hierarchy allows us to ignore cases where multiple
mutant forms of the same complex, or very closely related complexes, have solved structures in
the PDB.

We curated the resulting 82 heteromeric three-rings in the database in order to remove structures
in which the biology of assembly did not match the case considered by our model. Specifically, we
removed structures in the following four classes:

1. Antibody-Antigen Complexes Antibodies consist of two polypeptide chains (Heavy and
Light) that interact extensively with each other. In many cases, both chains interact with
an antigen, thus forming a ring-like topology. Biologically, however, antibodies are
synthesized and secreted in the absence of antigen, and only then bind to the antigen in
question. Our model does not cover this case, and so we do not consider this type of
complex in our data set. It is important to note, however, that the interactions to the
antigen generally involve much smaller surface area than the Heavy-Light interaction, but
even though these structures support the conclusions of our model we cannot be certain
that the evolutionary pressures on this system are equivalent to those implied by our model.
Of the 82 ring structures in the initial dataset, 28 belonged to this class.

2. Integral Membrane Complexes The vast majority of these cases involve the
extracellular domains of dimeric membrane-bound receptors binding to monomeric
cytokines. This situation, in which two members of the complex are constrained to a
membrane surface and one can diffuse in three-dimensional space, presents a very different
set of assembly challenges compared to the model considered in this work. In addition, some
cytokine-receptor binding events induce conformational changes in the receptor that
influence receptor dimerization, an effect which is also neglected in our model. As with the
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antibody case, most of these structures contain at least one “weak” interaction, but we
nonetheless ignore them due to the fact that they do not conform to the assumptions our
model. Of the 82 ring structures in the initial dataset, 15 belonged to this class.

3. Complexes Produced through Proteolysis This class consists of cases where a subset
of the individual chains in the structure are produced when a single chain is cleaved in two.
The majority of these cases involve proteases (e.g. trypsin) complexed with protease
inhibitors. Proteases such as trypsin are synthesized and fold as a single polypeptide chain
(the zymogen). Activation of the zymogen involves a proteolytic cleavage event in which
this single chain is cut in two. This produces two polypeptide chains that are intricately
folded with one another. In these structures, the interaction between the two chains of the
protease is not formed through bimolecular association, but rather through folding as a
single chain and subsequent cleavage. This situation is clearly distinct from the assembly
dynamics considered in our models, although it is again the case that the protease-inhibitor
interactions are considerably weaker than the interaction between the two proteases (a fact
which would support our model if the data were included). Of the 82 structures in the
initial dataset, 8 belonged to this class.

4. Miscellaneous This class consisted of one structure in which binding between two of the
subunits was induced by a small molecule (FK506), and one case in which the complex
assembles around DNA. Neither case conforms to the assumptions of our model, and so
these two structures are also removed from the set.

After curating the 82 structures of heteromeric three-membered rings from 3D Complex, we
obtained 29 structures for which the biological system represented by the structure seemed to
represent a case similar to that considered in our model. Of these 29 structures, many are
enzymes (e.g. glutamine amidotransferase) and many serve regulatory functions (e.g. the complex
of the transcription factor NF-κB with its regulator IκBα). A list of all structures can be found
in a table provided as additional supplementary material.

5.2 Structures for heteromeric four-membered chains

To serve as a contrast to the case of the three-membered rings discussed above, we also
considered heteromeric four-membered chains. A heteromeric four-membered chain contains
exactly the same number of interactions as a three-membered ring, making it possible to perform
a direct comparison between the two types of structures. This comparison is particularly
informative due to the fact that optimizing assembly in the case of chains will tend to favor
uniformly strong interactions (as demonstrated by the analyses in sections 3.2.3 and 4.3.3).

To assemble this dataset we began with the 104 heteromeric four-membered chains found at the
QS-90 level of the 3D Complex hierarchy. We removed structures in the following classes from the
data set:

1. Integral membrane complexes As with the heteromeric rings discussed above, a number
of the chain structures in this data set included one or more proteins that exist as integral
membrane proteins in the cell. In general, these structures involved the extracellular
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domains of receptors (e.g. the T-cell receptor) complexed with ligands and/or other
receptors. As with the three-membered rings, we did not consider the particular
evolutionary pressures that might arise in the case of interactions involving integral
membrane proteins. Of the 104 chain structures in the initial dataset, 23 belong to this
class.

2. Biological assembly mis-annotated The 3D Complex database is constructed on the
basis of the biological assemblies included in default PDB files [17]. As has been noted
elsewhere [18,19], these complexes are sometimes distinct from the assembly considered
biologically relevant in the very manuscript in which the crystal structure at issue is
reported. In this case, if the paper reporting a particular structure, or other relevant
literature, indicated that the biologically active form of the complex was not a
four-membered chain, we removed that structure from our data set. In some cases, we found
that authors of the paper reporting the structure cited direct size-exclusion chromatography
results indicating that the biologically relevant form of the molecule was a dimer, despite
the fact that the “biological assembly” in the PDB was reported as a tetramer. Of the 104
chain structures in the initial dataset, we identified 18 for which there was strong evidence
that the biologically relevant form of the complex was not in fact a four-membered chain.

3. Antibody-antigen complexes A number of structures in the data set consisted of
antibodies binding to various antigens. As with the rings above, we removed these
structures from our data set as they represent a case of assembly quite different from that
considered here. Of the 104 chain structures in the initial dataset, 8 consisted of
antibody-antigen complexes.

4. Complexes produced through proteolysis This class consisted of protease and lectin
molecules in which at least two of the chains in the final structure are synthesized as a
single polypeptide sequence which is later cleaved to give the final, active structure. Since
two or more of the chains in these structures do not interact with one another through a
bimolecular association event, we did not include these cases in our analysis. Of the 104
chain structures in the initial dataset, 7 involved complexes in which this type of proteolytic
cleavage was involved.

5. DNA-binding complexes These structures consisted of complexes that assemble around
specific DNA sequences. Since assembly on DNA is not considered in our model, we did not
include these cases in our analysis. Of the 104 chain structures in the initial dataset, 4
involved complexes assembling on DNA.

After curating the data set into the above classes, we obtained a dataset of 44 heteromeric
four-membered chains; as discussed in section 5.3 below, 11 of these structures actually
represented four-membered rings upon further analysis. Of the remaining 33 structures, most
represent either enzymes or enzyme-inhibitor complexes. A list of these structures is provided as
an additional supplementary table.
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5.3 Calculating changes in non-polar surface area

Examining affinity distributions in rings and chains using solved protein structures involves
estimating the binary binding affinities between components of the structure. Here we focus on
measuring the change in Solvent-Accessible Non-Polar Surface Area (∆SASANP), which has been
shown to correlate with binding affinities in some studies [20,21]. We used the software package
POPS [22] to perform this calculation. We proceeded by creating three separate PDB files: file
(1) contains only the atoms (ATOM records) that belong to the residues of the first chain (say,
chain “A”), file (2) contains only the atoms that belong to the residues of the second chain (“B”),
and file (3) contains the atoms from both chains (“A + B”). Next, we calculated the non-polar
solvent-accessible surface area for each file separately using POPS. This area is marked as
“hydrophobic” in the POPS output. We then calculated ∆SASANP as the difference between the
sum of these areas for each domain separately and the area for the domains combined:

∆SASANP(A, B) = SASANP(A) + SASANP(B)− SASANP(A + B). (41)

In other words, ∆SASANP is calculated as the SASANP of file (1) plus the SASANP of file (2)
minus the SASANP of file (3). We used the definition in equation 41 to calculate ∆SASANP for
every pair of chains in the structure of interest.

For the curated three-membered heteromeric ring structures, all of the cases yielded the expected
ring-like topology when subjected to this analysis. The case with the four-membered chains was
more complex. Many of the structures in this case actually contained more than 3 interactions
(defined as ∆SASANP greater than some cutoff). Since the only way to include more than 3
unique interactions in a graph of four nodes involves creating a cycle, this analysis indicated that
a number of the structures considered as “chains” in 3D Complex actually contained rings. We

used the minimum “affinity” observed for rings (129.67 Å
2
) as a cutoff and found that 11 of the

44 curated chains actually exhibited significant ring-like structure, a fact that we confirmed
through simple visual analysis of the structure itself in each case. This analysis left 33 “true”
four-membered heteromeric chains in our data set.

It is important to note that equation 41 represents a very rough and imperfect measure of
affinity [20, 21,23]. As such, we also explored using total interface area (as opposed to non-polar
area), fractional surface area (defined as the area of the interface divided by the entire SASA of
the binary complex), and the ∆G values annotated in PISA [24]. We found that these alternative
definitions of affinity were strongly correlated with ∆SASANP (R2 > 0.8 in each case), thus
yielding nearly identical results to those discussed for ∆SASANP below. Of course, all of these
definitions are imperfect [23], but in the absence of empirical data regarding affinities in this case,
the structural analysis presented here represents the only available test of our predictions.

5.4 Comparing rings and chains

As discussed above, every structure in our ring or chain data sets contains exactly three

interactions with ∆SASANP > 129.67 Å
2
. For any structure, we can thus define the largest

interface (or “Strong” interaction, denoted S), the smallest interface (or “Weak” interaction,
denoted W), and the interface in between the two (i.e. the “Medium” interaction, denoted M).
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Fig. 4A in the main text represents a summary comparison of the S and W interactions for rings
and chains, which we expand upon here.

Figure 24 shows a histogram, the kernel-smoothed density as well as a “rug” plot of the raw data
for the S interactions of both rings and chains, while Figure 25 represents the same plot for the W

interactions. In the case of S interactions, the mean ∆SASANP for rings is SR = 2099 Å
2
, while

for chains we have SC = 1631 Å
2
. To test if this difference in means is significant, we performed a

simple random permutation test with 105 replicates in the statistical package R [11]. We found
that the difference is not significant after correcting for multiple comparisons (the uncorrected

p = 0.0441). For weak interactions, we have WR = 531 Å
2

for rings and WC = 914 Å
2

for chains.
The difference in means for weak interactions was considerably more significant (p = 6 · 10−5).
From this analysis we can conclude that the strong interactions in rings are, on average, stronger
than those for chains (with the caveat of weak statistical significance), while the weak interactions
in rings are considerably weaker than the weak interactions in chains.
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Figure 24: Strong interactions in both rings and chains. (A) Here we plot the distribution of “S” affinities for
rings. The black boxes represent a histogram of the data, while the red line corresponds to a kernel-smoothed
density. The blue lines on the x-axis are a “rug” plot of the data, where each line represents the affinity
for a single ring in the data set. The rug plot is provided to give a sense for the data underlying both the
histogram and the kernel-smoothed density. (B) A plot as in panel A, but for the S affinities in chains.

It is important to note that the assembly properties of a ring or chain with a particular set of
affinities will vary strongly with total monomer concentration (see section 4.1.1). We thus also
considered the weak-to-strong interaction ratios (W/S); a plot of the ratio densities for rings and
chains can be found in Fig. 4B of the main text. Figure 26 shows this density, as well as
histograms and rug plots, for rings and chains separately. Again using a permutation test, we
found that the mean ratios for rings, (W/S)R = 0.309, is significantly smaller than that for chains
(W/S)C = 0.627 (p = 10−5). Comparison of both the absolute affinity and relative affinity
distributions reveals that the weakest interaction in rings is significantly weaker than the weakest
interaction in chains, as our assembly models would predict.
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Figure 25: Weak interactions in both rings and chains. (A) Here we plot the distribution of “W” affinities for
rings. The black boxes represent a histogram of the data, while the red line corresponds to a kernel-smoothed
density. The blue lines on the x-axis are a “rug” plot of the data, where each line represents the affinity
for a single ring in the data set. The rug plot is provided to give a sense for the data underlying both the
histogram and the kernel-smoothed density. (B) A plot as in panel A, but for the W affinities in chains.
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Figure 26: The weak-to-strong ratio for both rings and chains. (A) Here we plot the distribution of the
weak to strong ratio (W/S) for rings. The black boxes represent a histogram of the data, while the red line
corresponds to a kernel-smoothed density. The blue lines on the x-axis are a “rug” plot of the data, where
each line represents the affinity for a single ring in the data set. The rug plot is provided to give a sense for
the data underlying both the histogram and the kernel-smoothed density. (B) A plot as in panel A, but for
the W/S ratios found in chains.

Interestingly, the kernel-smoothed density estimates and the histograms for both rings and chains
demonstrate considerable bimodality (see Figure 26). For the rings, we can divide the data into
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the first peak (with (W/S)R < 0.5) and the second peak ((W/S)R > 0.5). As can be seen from
Figure 26, the majority of rings (24 of 29) belong to the first peak, and taking this peak alone we
have (W/S)R = 0.225, which is significantly smaller than the average for the entire sample. The 5
points belonging to the second peak have a much higher average, with (W/S)R = 0.712. Similarly,
we can use a ratio of 0.5 to divide the chains into two peaks, and for 11 structures in the smaller
ratio peak we have (W/S)C = 0.319 while for the 23 points in the second peak we have
(W/S)C = 0.781. As Figure 27 demonstrates, normal quantile-quantile plots for the major peaks
in both cases (the smaller-ratio peak for the rings and the larger-ratio peak for the chains) reveal
that both can be well-approximated by Gaussian distributions (the smaller peaks in both cases
contain too few data points to support conclusions regarding normality). Although we do not
have enough data to make this point conclusively, we can speculate that both ratio distributions
are the result of two combined Gaussian distributions, one with a smaller average ratio, and one
with a larger.
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Figure 27: Quantile-Quantile plots comparing the ratio distributions of rings and chains with normal distri-
butions. (A) Here we compare the quantiles of the small-ratio W/S distribution for rings (e.g. those rings
with W/S < 0.5) to the quantiles of the normal distribution. The “Sample Quantiles” on the y-axis are
taken from our data on rings, while the “Theoretical Quantiles” for the normal distribution are computed
in R. The solid black line represents a linear fit to the Q-Q data. The linear fit in this case is fairly good,
with strong statistical significance for both the slope and intercept terms (p < 2 · 10−16). Although there
are slight systematic deviations from the straight line throughout the range of quantiles, this result indicates
that the small-ratio distribution is approximately Gaussian in character. (B) In this case we compare the
quantiles of the large-ratio W/S distribution for chains (e.g. those chains with W/S > 0.5) to the quantiles
of the normal distribution. As in panel A, the “Sample Quantiles” on the y-axis are taken from our data on
chains, while the “Theoretical Quantiles” for the normal distribution are computed in R. The solid line is
again a linear fit to the Q-Q data; the fit in this case is excellent, with p < 2 · 10−16 for both the slope and
intercept terms. There is less systematic deviation from the fit in this case, indicating that the large-W/S
peak for chains can be fairly well approximated Gaussian distribution.

As can be seen from Fig. 4A in the main text, the smaller-ratio peak for the chains overlaps with
that peak for the rings, and vice versa. Using a permutation test, we found that smaller-ratio
chains had a significantly higher average than smaller-ratio rings (although the significance is
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fairly weak after correcting for multiple comparisons, with an uncorrected p = 0.0199), while the
averages for the larger-ratio chains and rings were statistically indistinguishable (p = 0.254).

We thus find that 24 of the 29 rings considered in our data set conform to our prediction that
rings will contain at least one “weak” interaction. The 5 remaining structures do not seem to
contain a weak interaction (i.e. they seem to belong to the chain distribution rather than the ring
one). These cases may represent situations in which the cell can accommodate sub-optimal
assembly efficiency, or cases in which mechanisms not considered in our model (e.g.
chaperone-mediated assembly) are involved.

5.5 Gaussian control

Although the above analysis indicates that rings and chains, on average, conform to the
expectations of our model, it is unclear to what extent our observations represent evolutionary
pressures on affinities. For instance, say we have some positive continuous random variable X
that follows an underlying probability density p. Sampling three instances of X from this
distribution will naturally result in a “largest” and “smallest” value for the sample, and the ratio
of these two numbers will always be less than 1.

We thus conducted a control to test whether we would observe W/S ratio distributions similar to
the results for rings and chains when the interactions themselves are sampled from a single
underlying distribution. We considered a simple model in which a “structure” is constructed by
sampling 3 ∆SASANP from a Gaussian distribution. We set the mean µ of the Gaussian to be the

mean of all the interactions (A = S ∪M ∪W ) in a given data set; for rings we have AR = 1255 Å
2

and for chains we have AC = 1296 Å
2
. The standard deviation σ of the Gaussian was set to the

sample standard deviation in each case: s(AR) = 966 Å
2

and s(AC) = 700 Å
2
.

Of course, ∆SASANP values cannot be negative, and indeed in section 5.3 we defined a cutoff for

considering only interactions with ∆SASANP > 129.67 Å
2

as valid. In order to mimic these

constraints, we must thus introduce a minimum affinity (129.67 Å
2
) and reject affinities below

that cutoff. If we only implement a lower bound, however, the set of sampled interactions from
the above procedure will exhibit a mean significantly different from the underlying Gaussian used
to construct the data. To prevent this from happening, we implement an upper bound such that
the z-score of this upper bound is equal to the absolute value of the z-score for the chosen
minimum (that is, zmax = −zmin). This allows us to construct a distribution of random affinities
from the underlying Gaussian with a minimum possible affinity that is nonetheless symmetric and
exhibits the defined average.

Each random structure sampled from the distribution as defined above has a S, M and W
interaction, and for each structure we calculate the W/S ratio. A “model” data set is constructed
from N such structures, where N = 29 for rings and 33 for chains to mimic the distributions we
observe in the real data. We constructed 104 such data sets (for a total of 2.9 · 105 structures in
the case of the rings) and asked what fraction of these random datasets exhibited W/S ratios
smaller than or equal to that observed for the rings and larger than or equal to that observed for
chains.

In every case, we find that this Gaussian control is unlikely to explain the data: p = 9 · 10−4 for
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rings and p < 10−4 for chains.

Fig. 4C in the main text is meant to summarize the results of this control graphically. In that
case, we have a single Gaussian distribution with an average taken to be approximately that

observed for rings and chains (µ = 1250 Å
2
). We vary the standard deviation from σ = 25 Å

2
to

2500 Å
2

and maintain a cutoff of 129.67 Å
2
. In this case, we take N = 30 for each data set and

we construct 104 data sets for each value of σ. In Figure 4C we plot the average W/S and 95%
confidence intervals for random data sets constructed this way as a function of σ/µ.

It is important to note that we have controlled here only for one type of underlying distribution;
namely a Gaussian with a particular minimum affinity cutoff. Although this control is clearly
unlikely to produce the data, one could potentially find some other single underlying distribution
of affinities that could. As Fig. 4B in the main text indicates, however, even if this is the case,
one could argue that evolution has selected parameters for this underlying distribution (e.g. µ and
σ) such that configurations with optimal assembly characteristics are likely.
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Figure 28: Relationship between the change in solvent-accessible non-polar surface area and binding free
energy. The squares in the plot represent data taken from Table 1 in reference [21]; in this case the ∆Gb
values are obtained from experimental measurements, and we determined the ∆SASANP directly from the
corresponding crystal structures using POPS [22] as described in section 5.3 above. The green line is a linear
fit to the data, which yields an R2 = 0.47.

5.6 Affinities for the interactions in the crystal structures of rings

One can use available crystal structures of interacting proteins for which affinities are known to
investigate the quantitative relationship between ∆SASANP and ∆G0

b . Using a recently-published
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data set of 20 such structures [21], we found a roughly linear relationship between the two, with
an R2 of 0.47 (see Figure 28). Although the correlation is imperfect, the linear fit allows us to
map ∆SASANP values into ∆G0

b values and thus KDs for the interactions in our data set. The
equation we obtain in this case is:

∆G0
b(A, B) = −0.015 ·∆SASANP(A, B)− 4.17

with ∆SASANP(A, B) given in Å
2

and ∆G0
b(A, B) in kcal mol−1. Assuming approximately room

temperatures (i.e. RT ≈ 0.6 kcal mol−1), the average KD for strong bonds in our rings data set is
8.0 · 10−12, and the average KD for weak bonds is 1.8 · 10−6. Interestingly, these are very close to
the values used for Figures 2A and 3B in the main text, as well as the optimum values obtained in
our analysis of heteromeric rings (Fig. 3A of the main text). As mentioned above (and as is clear
from Figure 28), ∆SASANP is only a very rough measure of actual binding affinity [20, 21,23];
these results simply indicate that the KD values we use for “strong” and “weak” bonds in the text
(e.g. 10−12 and 10−6 M, respectively) are at least broadly consistent with the range of affinities
one would expect given the buried surface areas in the crystal structures of homomeric rings.
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